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Ordinal data from surveys

Rating:

Responses convey the level

of a “perception”

risk, taste, fear, agreement, . . .

Ranking:

Responses convey the

location/preference of the “object”

in a given ordered list:

items, products, sports, applicants, sentences, teams, songs, . . .

1 How likely is it that you would recommend this

brand to a friend or colleague? (Net Promoter

Score)

2 Does your family easily make ends meet?

3 How do you feel safe in the place where you

live?

4 . . .

“In your opinion, what is the probability that you will reach
age 75?” Please provide a value between 0 (impossible

event) and 100 (certain event).

R Subjective survival probability Ordinal interpretation

1 0.00 ≤ Pr (S) ≤ 0.05 IMPOSSIBLE/Almost IMPOSSIBLE

2 0.05 < Pr (S) ≤ 0.25 LOW

3 0.25 < Pr (S) ≤ 0.45 Moderately LOW

4 0.45 < Pr (S) ≤ 0.55 About FIFTY/FIFTY

5 0.55 < Pr (S) ≤ 0.75 Moderately HIGH

6 0.75 < Pr (S) ≤ 0.95 HIGH

7 0.95 < Pr (S) ≤ 1.00 SURE/Almost SURE

R. Simone An overview of tree-based methods for ordinal data
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Data example 1: Satisfaction for professional placement of Italian PhDs

▸ Consider the overall satisfaction for
the professional placement of Italian
PhDs of cohorts 2012 and 2014,
collected within the survey run by the
Italian National Office (ISTAT) to
investigate the professional placement
of PhD (available at https://www.

istat.it/it/archivio/87536).

▸ All the ratings were collected on a
scale with 10 ordered categories: the
rating scale has been subsequently
modified to a scale with 8 categories
due to zero-scores observed in certain
categories, so that higher scores along
the response scale corresponds to
higher levels of satisfaction.

R. Simone An overview of tree-based methods for ordinal data
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Data example 2: Work-related stress

▸ Data from the 5th European Working
Condition Survey carried out by
Eurofound in 2010 on working
conditions for the EU28.

▸ Consider n = 972 responses for Italy
to the question ‘Do you experience
stress in your work?’ measured on a
m = 5 wording-type scale: ‘Always’,
‘Most of the time’, ‘Sometimes’,
‘Rarely’, ‘Never’, coded from 1 to 5.

R. Simone An overview of tree-based methods for ordinal data
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Tree methods

Top-down greedy recursive binary partitioning

▸ Top-down: from the whole set of
observations to smaller sets of
observations, according to a hierarchy

▸ Greedy: The optimality of the
splitting criterion is considered at
local level only (at each node), and
not with reference to subsequent
steps and the final tree

▸ Recursive: The procedure is applied
starting from the root node, and then
for each descendant, following the
same methods and criteria, until a
stopping criterion is eventually met

▸ Binary partitioning: Each node (set of
observations) is partitioned into two
subsets, on the basis of certain values
of a predictor (splitting variables)

R. Simone An overview of tree-based methods for ordinal data
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From predictors to splitting variables

If X is a predictor, candidate splitting variables are created at each step:
▸ quantitative (numeric): then build a splitting variable according to the rule
X ≤ s or X > s, for each s ∈ Range(X):

1 X = age: X ≤ 18 or X > 18, X > 30 or X < 30, . . .
2 X number of purchases: X ≤ 5 or X > 5, . . .

▸ categorical ordinal, with m levels: then build a splitting variable according
to the rule X ≤ cj or X > cj , for all ordered level cj : c1 ≺ c2 ≺ ⋯ ≺ cm (for
a total of m − 1 splitting binary variables):

1 X = customer satisfaction on m = 5 rating scales (1 =’very unsatisfied’,
2 =’unsatisfied’, 3 =’indifferent’, 4 = ’satisfied’, 5 =’very satisfied’): X very
unsatisfied or unsatisfied (X ≤ 2), or X indifferent or satisfied (X ≥ 3), . . .

▸ categorical nominal, with m levels c1, . . . , cm: then build a splitting
variable according to the rule X ∈ S or X ∉ S, for all non-trivial subset S
of {c1, . . . , cm}, for a total of 2m−1 − 1 splitting binary variables:

1 X = gender (two levels: M, F), only one splitting variable X =M or X = F
2 X = marital status (4 levels: single, in a relationship, divorced, widower): 7

candidate splitting variables:
1 X = Single VS X ≠ Single
2 X = In a relationship VS X ≠ in a relationship
3 X = Divorced VS X ≠ Divorced
4 X = Widower VS X ≠ Widower
5 X = Single or in a relationship VS X = divorced or widower
6 X = Single or divorced VS X = in a relationship or widower
7 X = Single or widower VS X = in a relationship or divorced

R. Simone An overview of tree-based methods for ordinal data
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CART algorithm (Breiman, Friedman, Olshen & Stone (1984))

CART: Classification And Regression Trees1:

▸ Classification : for qualitative responses; Regression : for numerical
responses

Breiman, L., Friedman J.H., Olshen,R.A. and C.J Stone. (1984). Classification and
Regression Trees. Chapman & Hall CRC, Boca Raton

Therneau T. and B. Atkinson (2018). rpart: Recursive Partitioning and Regression Trees. R
package version 4.1-13. https://CRAN.R-project.org/package=rpart

Galimberti G., Soffritti G., Di Maso M. (2012). Classification Trees for Ordinal Responses in
R: The rpartScore Package. Journal of Statistical Software, 47(10), 1-25. URL
http://www.jstatsoft.org/v47/i10/.

Picarretta, R. (2008). Classification trees for ordinal variables. Computational Statistics,
23(3): 407–427.
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Prediction and error for nodes

Let l1, . . . , lT be the terminal nodes (leaves) of a tree.

Node l1 l2 ⋯ ⋯ lT

↓ ↓ ↓ ↓ ↓
Prediction ŷ(l1) ŷ(l2) ⋯ ⋯ ŷ(lT )

Error e(l1) e(l2) ⋯ ⋯ e(lT )

The prediction for a new observation corresponding to leaf l (in terms of

covariate values learnt from tree branches down to l) is:

ŷ(l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Mode(l) = argmax
j=1,...,m

{f (l)1 , . . . , f
(l)
m }, for classification trees

ȳ(l) = 1

∣l∣ ∑i∈l
yi, for regression trees
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Splitting rule and Generalized Gini impurity function

At node k, the procedure chooses the splitting variable among the candidate ones so
that the decrement in impurity is maximized (namely, chose the split that generate
more homogeneous children nodes):

∆i(k) = i(k) − (
n2k

nk
i(2k) +

n2k+1

nk
i(2k + 1))

where:

i(k) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

RSSk =
nk
∑
h=1

(yh − ȳ
(k))

2
, for regression trees

G⋆k =
m

∑
j=1

m

∑
h=1

L(j, h)f
(k)
j f

(k)
h

, for classification trees

For an ordered response, let s1 < s2 < ⋯ < sm be a
system of numerical scores for categories. At a node
t, consider the Generalized Gini impurity function:

iGG1(t) =
m

∑
h=1

m

∑
j=1

∣sh − sj ∣f
(t)
h
f
(t)
j (1)

iGG2(t) =
m

∑
h=1

m

∑
j=1

(sh − sk)
2f
(t)
h
f
(t)
j (2)
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Prediction and error for nodes

Let l1, . . . , lT be the terminal nodes of a tree.

Node l1 l2 ⋯ ⋯ lT

↓ ↓ ↓ ↓ ↓
Prediction ŷ(l1) ŷ(l2) ⋯ ⋯ ŷ(lT )

Error e(l1) e(l2) ⋯ ⋯ e(lT )

▸ For observation i classified into node l, let ŝi(l) = ŷ
(l) be the predicted score;

▸ The error e(l) entailed by the tree for observations classified into l can be either:

▸ Total number of miss-classification:

e(l) = Rmr(l) = ∑
i→l

(1 − Isi(ŝi(l))

▸ Total miss-classification cost:

e(l) = Rmc(l) = ∑
i→l

∣si − ŝi(l)∣

▸ The total measure of predictive performance of a tree T with leaves l1 . . . , lT is
given then by:

Rmr(T ) =∑
i

(1 − Isi(ŝi(T )) or Rmc(T ) =∑
i

∣si − ŝi(T )∣
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Setting hyper-parameters of the tree with pre-pruning

Pre-pruning (stopping rules) :

▸ Minimal sample size at node k necessary to look for candidate split (e.g.
minsplit = 50; minsplit = 0.3n, . . . );

▸ Minimal sample size of children nodes of a candidate split to accept it (e.g.
textttminbucket = 30);

▸ Maximum depth of the tree (maxdepth = 0: only the root node; maxdepth = 1:
(at most) the primary split; maxdepth = 2: (at most) one split down from the
nodes of the primary split; . . . . . . ;

▸ . . . . . .

library(rpart.plot)

R. Simone An overview of tree-based methods for ordinal data
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A deeper tree on Satisfaction for Professional Placement of PhDs

library(rpart.plot)

R. Simone An overview of tree-based methods for ordinal data
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Selecting the best tree with post-pruning

(Cost Complexity) post-pruning :

▸ Instead of controlling the growth of the tree with pre-pruning rules, a very large tree T can
be grown.

▸ Then, in order to correct for overfitting, some tree branches might be pruned ;

▸ For each tree T , consider the relative error improvement with respect to the root node
(T (0)):

R
∗

=

R(T )

R(T (0))
.

▸ If T (−s) denotes a given subtree obtained from T by pruning the splits s, the cost
complexity parameter of pruning the branches (and nodes) not included in T (−s) is defined
as:

cp =
R∗
(T
(−s)
) −R∗

(T )

∣T ∣ − ∣T
(−s)
∣

where the size ∣T ∣ of a tree T is given by the number of its terminal nodes (nsplit(T )
= ∣T ∣ − 1);

▸ In general, if s1 ⊂ s2 are the sets of nodes that would be pruned from T to obtain subtrees
T
(−s1) and T (−s2), then the cost complexity of pruning nodes in s2 ∖ s1 would be:

cp =
R∗
(T
(−s2)) −R∗

(T
(−s1))

∣T
(−s1)∣ − ∣T (−s2)∣

▸ Remark that pruned trees entail larger errors R∗, so cp > 0

R. Simone An overview of tree-based methods for ordinal data
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Ctree: conditional inference trees

▸ Trees built with CART do not imply any conclusion on statistically

significant differences of splitting variables at children nodes. This could

cause overfitting and biased trees (in which variables with many possible

split-points are more likely to occur in the partitioning process). Variable

selection and split-point selection are parallel procedures.

Conditional inference Trees are unbiased trees so that:

▸ First, a global permutation test of independence between response and

predictors is run. If significant, then permutation tests are run individually

for each predictor: the one with most significant association with response

is retained (variable selection phase).
▸ For the selected predictor, permutation tests are run to identify the best

split-point.
▸ The procedure works for any kind of response: for ordinal variable, it

requires that numeric scores are assigned to categories.
Hothorn, T., Hornik, K., Zeileis, A. (2019). Unbiased recursive partitioning: A conditional
inference framework. Journal of Computational and Graphical Statistics, Taylor & Francis,
2006, 15, 651-674

Hothorn, T., Zeileis, A. (2015). partykit: A Modular Toolkit for Recursive Partytioning in R.
Journal of Machine Learning Research, 16:3905-3909.
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Conditional inference trees: library(partykit)

Figure: CTREE for satisfaction for PhD placement

R. Simone An overview of tree-based methods for ordinal data
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A proposal for Quantile ANOVA tree

▸ Quantiles are the location measures most suitable to summarize rating

distributions, as they are structured on the order among categories and

their computation does not require any numerical scoring.

▸ IDEA: implement a Quantile-ANOVA tree for ratings where - at each step

- significant differences in possibly many quantiles drive the partitioning

process;

▸ Quantile Anova could be also used to perform multi-group analysis on the

terminal nodes.

Wilcox, R. R., Erceg-Hurn, D., Clark, F., & Carlson, M. (2014). Comparing two independent
groups via the lower and upper quantiles. Journal of Statistical Computation and Simulation,
84, 1543–1551.

Wilcox, R.R.(2017). Introduction to Robust Estimation & Hypothesis

Mair, P., Wilcox, R.R. (2019). Robust Statistical Methods in R Using the WRS2 Package.
Behavior Research Methods, https://doi.org/10.3758/s13428-019-01246-w.

Simone, R., Davino, C., Vistocco, D., Tutz, G. (2023). Quantile-based decision trees for
ordinal rating responses. (preprint)
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Drivers of dissatisfaction of Italian PhDs

Lower quantile tree: S(q) = {q0.1, q0.25}

Root Terminal Nodes

4 7 10 11 12 13

q0.1 3 2 2 3 2 5 5

q0.25 5 4 4 5 4 5 6

R. Simone An overview of tree-based methods for ordinal data
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Drivers of satisfaction of Italian PhDs

Upper quantile tree: S(q) = {q0.75, q0.9}

Root Terminal Nodes

2 6 7

q0.75 7 6 7 6

q0.9 7 7 8 7

R. Simone An overview of tree-based methods for ordinal data
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Model-based Trees

▸ Given a model M(θ;X) for the response R, a binary tree is grown to derive respondents’ profiles by

means of recursive partitioning on the basis of splitting variables;

▸ at each step, M-fluctuation tests are used to identify the candidate splitting variable that entails the higher

instability to parameters θk when entering the model;

▸ Then, the split point that maximizes an objective function is selected.

k

R ∼M(θk;X)

D = 0 D = 1

parameter instability
2k

(R∣D = 0) ∼M(θ2k;X)

2k + 1

(R∣D = 1) ∼M(θ2k+1;X)

Zeileis, A., Hothorn, T., Hornik, K. (2008). Model-based recursive partitioning. Journal of
Computational and Graphical Statistics, 17, 492 – 514.

Hothorn, T., Zeileis, A. (2015). partykit: A Modular Toolkit for Recursive Partytioning in
R. Journal of Machine Learning Research, 16, 3905-3909. URL
http://jmlr.org/papers/v16/hothorn15a.html
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Latent variable approach: Cumulative link models

▸ Let R⋆i denote the underlying (continuous) latent variable for the i-th subject,
and let Ri be the ordinal score marked by the i-th respondent to an item of a
questionnaire for i = 1, . . . , n. If −∞ = α0 < α1 < ⋯ < αm = +∞, then:

αr−1 < R
⋆
i ≤ αr ⇐⇒ Ri = r, r = 1, . . . ,m

(Benchmark bibliography)

McCullagh, P. (1980). Regression models for ordinal data (with discussion). Journal of the
Royal Statistical Society, Series B, 42, 109–142.

Agresti, A. (2010), Analysis of Ordinal Categorical Data, Wiley Series in Probability and
Statistics.

Tutz, G. (2012). Regression for Categorical Data. Cambridge: Cambridge University Press.

▸ The paradigm assumes a standard regression model on the latent trait:

R⋆i = ti β + εi,

with p ≥ 1 subjects’ covariates ti and regression coefficients β = (β1, . . . , βp)
′

▸ A link is set between the cumulative distribution and the linear predictor:

Pr(Ri ≤ r∣θ, ti) = Pr(R
⋆
i ≤ αr ∣θ, ti) = Pr(εi ≤ αr − ti β) = Fε(αr − ti β)

R. Simone An overview of tree-based methods for ordinal data
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MOB on stress

Figure: MOB tree with ordinal logits (M: Stress ∼ Gender)

R. Simone An overview of tree-based methods for ordinal data
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Models on the discrete support

A different approach foresees to model ordinal response variables for preference data
directly on the discrete support ({c1 ≺ c2 ≺ ⋯ ≺ cm}) rather than on the continuous
latent scale

Jenkins S.P. (2020). Comparing distributions of ordinal data. The Stata Journal,
20(3), 505–531.

In this case, for the observed sample (r1, . . . , rn) with relative frequency distribution

(f1, . . . , fm), the fitting result is directly a probability model (p1(θ), . . . , pm(θ)),

where possibly θ ≡ θi depending on subjects’ covariates

▸ Discretized Beta distribution

Taverne, C. and Lambert, P. (2014). Inflated Discrete Beta Regression Models for
Likert and Discrete Rating Scale Outcomes, arXiv:1405.4637v1, 19 May, 2014.

Ursino M (2014) Ordinal Data: a New Model with Applications. Ph.D. Thesis, XXVI
cycle, Polytechnic University of Turin, Turin

Ursino, M. and Gasparini, M. (2018). A new parsimonious model for ordinal
longitudinal data with application to subjective evaluations of a gastrointestinal
disease, Statistical Methods in Medical Research, 27(5), 1376–1393.

Simone, R. (2022) On finite mixtures of Discretized Beta model for ordered responses.
TEST 31, 828–855.
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Models on the discrete support

A different approach foresees to model ordinal response variables for preference data
directly on the discrete support ({c1 ≺ c2 ≺ ⋯ ≺ cm}) rather than on the continuous
latent scale

Jenkins S.P. (2020). Comparing distributions of ordinal data. The Stata Journal,
20(3), 505–531.

In this case, for the observed sample (r1, . . . , rn) with relative frequency distribution

(f1, . . . , fm), the fitting result is directly a probability model (p1(θ), . . . , pm(θ)),

where possibly θ ≡ θi depending on subjects’ covariates

▸ Inverse Hypergeometric distribution and its mixture

D’Elia A. (2003). Modelling ranks using the inverse hypergeometric distribution,
Statistical Modelling, 3, 65–78

Simone R., Iannario M. (2018). Analysing sport data with clusters of opposite

preferences. Statistical Modelling, 18(5-6), 1–20
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Models on the discrete support

A different approach foresees to model ordinal response variables for preference data
directly on the discrete support ({c1 ≺ c2 ≺ ⋯ ≺ cm}) rather than on the continuous
latent scale

Jenkins S.P. (2020). Comparing distributions of ordinal data. The Stata Journal,
20(3), 505–531.

In this case, for the observed sample (r1, . . . , rn) with relative frequency distribution

(f1, . . . , fm), the fitting result is directly a probability model (p1(θ), . . . , pm(θ)),

where possibly θ ≡ θi depending on subjects’ covariates

▸ Binomial distribution

Allik J (2014) A mixed-binomial model for Likert-type personality measure. Frontiers in
Psychology 5:1–13

Pinto da Costa JF, Alonso H, Cardoso JS (2008) The unimodal model for the
classification of ordinal data. Neural Networks, 21, 78–91. Corrigendum in: (2014).
Neural Networks, 59, 73–75

Zhou H, Lange K (2009) Rating movies and rating the raters who rate them. The

Amer Stat, 63:297–307
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Mixture models with uncertainty for ordinal variables

The class of cub mixture models 2 for ordinal variables (R1, . . . ,Rn) is grounded on
the specification of an uncertainty and a feeling component:

Pr (Ri = r ∣ xi, wi, θ) = πi br(ξi ∣wi) + (1 − πi)
1

m
, r = 1, . . . ,m, i = 1, . . . , n

Shifted Binomial:

br(ξi) = (
m − 1

r − 1
)ξm−r
i (1 − ξi)

r−1

Systematic components:

logit (πi) = xiβ

logit (ξi) =wiγ

No covariate:

πi = π ∈ (0,1], ξi = ξ ∈ [0,1]
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D’Elia & Piccolo (2005). Piccolo and Simone (2019)
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cub models visualization: contour plot of expectation
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Role and Meaning of Uncertainty a

aPiccolo and Simone 2019

Sampling from cub (π, ξi), for π ∈ (0,1]:

logit(ξi) = γ0 + γ1Di logit(Pr(Ri ≤ r∣Di)) = αr − δ1Di
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−
2.
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Bias induced by Binomial models
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5

Bias induced by POM models

Figure: Bias in the estimation of γ1 for Binomial model (top) and in the estimation of
δ1 in pom (bottom) for data generated from cub with varying values of π (abscissa)
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cub models and variable selection
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Figure shows the simulated and estimated distributions (conditional to Di = 0,1, respectively) of the shifted Binomial model (m = 9):

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

Pr (Ri = j) = (
8
j−1

)ξ
8−j
i

(1 − ξi)
j−1 ;

logit(ξi) = −1.362 + 2.744Di ;

j = 1,2, . . . ,9; i = 1,2, . . . ,n.

▸ Combined Backward - Forward selection for feeling and uncertainty parameters;

▸ Best-subset via accelerated EM algorithm:

Simone R. (2021). An accelerated EM algorithm for mixture models with uncertainty
for rating data. Computational Statistics, 36:691–714

▸ Group Lasso-regularization (Schneider, Pößnecke, Tutz:
https://epub.ub.uni-muenchen.de/68452/)

R. Simone An overview of tree-based methods for ordinal data
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CUBREMOT (CUB Regression Model Trees)

▸ An explanatory dummy among the available ones is identified which best splits
the data into two groups R∣D = 0 and R∣D = 1 (according to a splitting criterion)

▸ At node k with nk observations, let R ∼ cub (πk, ξk) (m > 3);

▸ If D is a significant dummy D to explain uncertainty and/or feeling, then:

logit(πk) = β
(k)
0 + β

(k)
1 D, logit(ξk) = γ

(k)
0 + γ

(k)
1 D

k

R ∼ cub (π̂k, ξ̂k)

D = 0 D = 1

2k

(R∣D = 0) ∼ cub (π̂2k, ξ̂2k)

2k + 1

(R∣D = 1) ∼ cub (π̂2k+1, ξ̂2k+1)

Cappelli, C., Simone, R., Di Iorio, F. (2019). cubremot : a model-based tree for ordinal
responses. Expert Systems with Applications, 124:39–49.
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Splitting criteria

Deviance-based decision rule

At any node k, choose the split induced by the (significant) covariate D that

maximizes:

∆Lk = (Ln0(π̂2k, ξ̂2k) +Ln1(π̂2k+1, ξ̂2k+1)) −Ln(π̂k, ξ̂k)

where Ln(π̂k, ξ̂k) is the log-likelihood of a cub fit on node k with n

observations.

k

R ∼ cub (π̂k, ξ̂k)

D = 0 D = 1

∆Lk
2k

(R∣D = 0) ∼ cub (π̂2k, ξ̂2k)

2k + 1

(R∣D = 1) ∼ cub (π̂2k+1, ξ̂2k+1)

R. Simone An overview of tree-based methods for ordinal data
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Splitting criteria

Dissimilarity-based decision rule

At any node k, choose the split that implies the maximum dissimilarity

between child nodes:

Diss(2k,2k + 1) = 1

2

m

∑
r=1

∣p̂(2k)r − p̂(2k+1)r ∣.

where p̂(2k) and p̂(2k+1) are the estimated probability distributions for the child

nodes.

k

R ∼ cub (π̂k, ξ̂k)

D = 0 D = 1

Diss(2k,2k + 1)
2k

(R∣D = 0) ∼ cub (π̂2k, ξ̂2k)

2k + 1

(R∣D = 1) ∼ cub (π̂2k+1, ξ̂2k+1)
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Choosing the best tree

If l1, . . . , lT are the terminal nodes (leaves) of a cubremot grown according to

a given criterion, with sizes n(l1), . . . , n(lT ), and if

Diss(lj) =
1

2

m

∑
r=1

∣p̂(lj)r − f (lj)r ∣, j = 1, . . . , T

with (f (lj)1 , . . . , f
(lj)
m ) and (p(lj)1 , . . . , p

(lj)
m ) observed frequency and estimated

probability distributions at the j-th leaf, resp., then choose the tree with

minimum weighted dissimilarity at terminal nodes:

Dissw =
T

∑
j=1

n(lj)
n

Diss(lj) = min! (3)

where n =
T

∑
j=1

n(lj) is the total number of observations.
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Visualization for cubremot

Effective graphical displays are available for cubremot :

▸ Plot of observed and fitted distributions of the response in each internal

and/or terminal node

▸ Scatter plot of the estimated cub models at terminal nodes as points in

the parameter space
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The stress tree: Log-likelihood splitting rule
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Shelter effect

If c denotes the shelter category, let

D
(c)
r =

⎧⎪⎪
⎨
⎪⎪⎩

1, if r = c

0, otherwise

R ∼ cub she(π
⋆, ξ, δ), with shelter at c, if:

Pr(R = r∣θ⋆) = (1 − δ)(π⋆br(ξ) + (1 − π⋆)
1

m
) + δD

(c)
r

Possibly, with subjects covariates vi:

logit(δi) = viω

Corduas M., Iannario M., Piccolo D. (2009). A class of statistical models for evaluating
services and performances, in: M.Bini et al. (eds.): Statistical methods for the evaluation of
educational services and quality of products. Contribution to Statistics, Physica-Verlag,
Springer, Berlin Heidelberg, pp.99–117

Iannario M. (2012). Modelling shelter choices in a class of mixture models for ordinal
responses. Stat Meth Appl, 21:1–22.
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cubremot -S...2

Figure: cubremot -S grown with the log-likelihood splitting criterion
R. Simone An overview of tree-based methods for ordinal data
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The uncertainty tree

▸ Consider cub uncertainty as impurity in growing a tree.

▸ cub models with dummy covariates only for feeling are tested on node t to
obtain candidate splits so that:

logit(ξ̂tl) = γ̂
(t)
0 , logit(ξ̂tr ) = γ̂

(t)
0 + γ̂

(t)
1 ,

and constant uncertainty parameters π̂tl = π̂tr .

t

R ∼ cub (π̂t, ξ̂t)

D = 0 D = 1

π̂tl − π̂t =max!
tl

(R∣D = 0) ∼ cub (π̂tr , ξ̂tl)

tr

(R∣D = 1) ∼ cub (π̂tr , ξ̂tr )

Simone, R., Cappelli, C., Di Iorio, F. (2019). Modelling marginal ranking distributions: the
uncertainty tree, Pattern Recognition Letters, 125: 278–288.
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Data example 3: Marginal rankings for metropolitan emergencies in Naples (2007)
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Pollution: uncertainty CUBREMOT

4: Immigration    6 
N=573 
π=0.623 
ξ=0.179 

 

 

 

  

 
 

 
 

  

3: PettyCrime >5 
N=535 
 π = 0.535 
ξ = 0.605 

 

2: PettyCrime   5 
N=1671 
π=0.528 
ξ=0.302 

 

7: Immigration >4 
N=413 
π=0.524 
ξ=0.634 
 

 

6: Immigration  4 
N=122 
π=0.524 
ξ=0.324 

 

5: Immigration >6 
N=1098 
π=0.623 
ξ=0.349 

 

9: Clientelism > 6 
N=201 
π=0.700 
ξ=0.317 
 

 

1  
N=2206 
π=0.428 
ξ=0.345 
 

 

  
  

10: Transport  6 
N=299 
π=0.677 
ξ=0.230 

 

11: Transport > 6 
N=799 
π=0.677 
ξ=0.429 

 

14: Crime  3 
N=300 
π=0.620 
ξ=0.593 

 

15: Crime > 3 
N=113 
π=0.620 
ξ=0.797 

 

8: Clientelism  6 
N=372 
π=0.700 
ξ=0.154 
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CUBREMOT versus MOB

▸ CUBREMOT allows to customize the splitting criterion in order to derive

meaningful response profiles, parameterized in terms of featuring

parameters;

▸ In principle, it does not require covariate specification for the maintained

model, yet the procedure can be easily extended so that the baseline

model at each node is a CUB model with covariates;

▸ Different visualization tools are available;

▸ The forthcoming R package will tackle possible bias issues in the selection

of the splitting variable by allowing separate variable selection step and

split-point choice;

▸ Possibility to implement flexible trees.....

R. Simone An overview of tree-based methods for ordinal data



Decision Trees: the framework in brief Non parametric trees Model-based approach Tree diagnostics

1 Decision Trees: the framework in brief

2 Non parametric trees
Conditional inference trees

Quantile trees

3 Model-based approach
CUBREMOT

4 Tree diagnostics
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Residual Diagnostics for ordinal models

Liu, D. and Zhang, H. (2018). Residuals and Diagnostics for Ordinal Regression
Models: A Surrogate Approach. Journal of the American Statistical Association,
113, 845 – 854.

▸ For models of the form Y ∼ Fa(y;X,θ), where Fa(⋅) is the cumulative
distribution function of the assumed model, the Authors advocate a jittering (on
the probability scale) approach on the probability scale and define a surrogate
variable S by conditionally sampling from a Uniform distribution:

S∣Y = y ∼ U(Fa(y − 1), Fa(y)), y = 1, . . . ,m

▸ Then, the residuals for the model fit can be defined as:

R = S − E[S∣η]
under the null that the assumed model is correctly specified, where η denotes the
available information set.

▸ Liu and Zhang (2018) proved that R∣X ∼ U(− 1
2
, 1
2
) if the assumed model is

correctly specified.

▸ Test for Uniformity: general (Kolmogorov-Smirnov, Cramer - von Mises, . . . ),
specific (Greenwood, Quesenberry-Miller (1977), . . . )

Quesenberry, C.P. and Miller, F.L.Jr. (1977). Power studies of some tests for
uniformity. Journal of the Statistical Computation and Simulation, 5(3),
169 – 191.
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Neglecting mixed population

Generate data according to R ∼ Bin(ξi), logit(ξi) = γ0 + γ1Di, with m = 7

Assumed model:

R ∼ Bin(ξ)
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Assumed model:

R ∼ Bin(ξi), logit(ξi) = γ0 + γ1Di
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Simone, R. (2023). Uncertainty Diagnostics of Binomial Regression Trees for Ordered Rating
Data. Journal of Classification, doi:10.1007/s00357-022-09429-5
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Further applications on tree diagnostics

▸ Select the most performing splitting criterion;
▸ Set optimal values for pre-pruning conditions (also for general MOB trees)
▸ Implement flexible uncertainty trees:

Figure: QQ-plot of surrogate residuals for Binomial and CUB fit to data
generated according to cub (π, ξ = 0.7), with m = 7, for varying π ∈ (0,1]

Simone, R. (2023). Uncertainty Diagnostics of Binomial Regression Trees for Ordered Rating
Data. Journal of Classification, doi:10.1007/s00357-022-09429-5
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Flexible uncertainty tree on satisfaction for PhD experience

Table: Summarizing results for the local model selection on the (deviance)
cubremot for Ph.D. overall satisfaction

Node Best Model π̂ 1 − ξ̂ δ̂ φ̂ shelter Split with Diss(cub , f) Diss(Best, f)
1 cub +she 0.52 0.664 0.037 - 6 L: research= 0, R: research= 1 0.038 0.027

2 cub +she 0.39 0.604 0.040 - 6 L: stem= 0; R: stem= 1 0.039 0.025

3 cub +she 0.67 0.683 0.016 - 2 L: stem= 0; R: stem= 1 0.045 0.036

4 cub +she 0.39 0.564 0.030 - 2 L: north= 0; R: north= 1 0.037 0.022

5 cub +she 0.45 0.631 0.082 - 6 - 0.059 0.014

6 cub +she 0.52 0.662 0.020 - 8 L: abroad= 0; R: abroad= 1 0.053 0.044

7 cub +she 0.79 0.695 0.016 - 2 L: gender= 0; R: gender= 1 0.046 0.036

8 cub 0.34 0.610 0.000 - - - 0.027 0.027

9 cub +she 0.44 0.516 0.034 - 2 - 0.071 0.055

12 cub +she 0.63 0.669 0.033 - 8 L: gender= 0; R: gender= 1 0.043 0.028

13 cub +she 0.41 0.643 0.048 - 2 - 0.076 0.052

14 cub +she 0.77 0.718 0.016 - 2 L: north= 0; R: north= 1 0.042 0.034

15 cub +she 0.73 0.649 0.079 - 6 - 0.065 0.028

24 cub +she 0.62 0.708 0.072 - 8 - 0.088 0.051

25 cub +she 0.60 0.638 0.025 - 5 - 0.031 0.025

28 cub +she 0.63 0.739 0.026 - 4 - 0.033 0.021

29 cub +she 0.75 0.706 0.058 - 6 - 0.064 0.044
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Further literature on tree methods

Loh, W.Y., (2014). Fifty years of classification and regression trees, International Statistical
Review, 82(3): 329–348.

Sciandra, M., Plaia, A., Capursi, V. (2017). Classification trees for multivariate ordinal
response: an application to student evaluation teaching. Quality and Quantity, 51:641–655.

Tutz, G., Berger, M. (2021). Tree-structured scale effects in binary and ordinal regression.
Stat Comput, 31, 17.

. . . . . . . . . . . . . . . . . . . . .

R. Simone An overview of tree-based methods for ordinal data



Decision Trees: the framework in brief Non parametric trees Model-based approach Tree diagnostics

Tree ensembles: The state of the art for ordered variables

Garge, N.R., Bobashev, G. & Eggleston, B. (2013). Random forest methodology for
model-based recursive partitioning: the mobForest package for R. BMC Bioinformatics 14,
125.

Buri M, Hothorn T. (2020). Model-based random forests for ordinal regression. Int J
Biostat., doi: 10.1515/ijb-2019-0063.

Janitza, S., Tutz, G., Boulesteix, A.L. (2016). Random Forests for Ordinal Responses:
Prediction and Variable Selection. Computational Statistics and Data Analysis 96,57–73

Wright, M.N., Ziegler A. (2017). ranger: A Fast Implementation of Random Forests for High
Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1-17.

Hornung, R. (2020). Ordinal Forests. Journal of Classification. 37: 4–17.

Simone, R., Tutz G. (2020). Hybrid random forests for ordinal data, In: Book of Short
Papers SIS 2020, Pearson, Eds. A. Pollice, N. Salvati, and F. Schirripa Spagnolo, ISBN:
9788891910776, pp. 1171–1176.

Tutz, G. (2022). Ordinal Trees and Random Forests: Score-Free Recursive Partitioning and
Improved Ensembles. Journal of Classification 39:241–263.

. . . . . . . . . . . . . . . . . . . . .

Simone, R. (2023). CUB random forests to assess the impact of uncertainty specification on

prediction of ordinal scores (preprint)
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Thank you for the attention!
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