Clustering longitudinal ordinal data

Julien JACQUES & Francesco AMATO Université Lyon 2, ERIC lab.

Brescia, May 2023

Motivating data

Related work

The MOM model

Inference

Numerical study on simulated data

Real data application

Conclusion and future works

My works on ordinal data

- modle-based clustering of ordinal data
 - C. Biernacki and J. Jacques (2016), Model-based clustering of multivariate ordinal data relying on a stochastic binary search algorithm, Statistics and Computing, 26 [5], 929-943.
- co-clustering of ordinal data
 - J. Jacques and C. Biernacki (2018), Model-based co-clustering for ordinal data, Computational Statistics and Data Analysis, 123, 101-115.
 - M. Selosse, J. Jacques, C. Biernacki and F. Cousson-Gélie (2019). Analyzing health quality survey using constrained co-clustering model for ordinal data and some dynamic implication, Journal of the Royal Statistical Society, Series C, 68 [5], 1327-1349.
- R package for classification, clustering and co-clustering of ordinal data
 - M. Selosse, J. Jacques and C. Biernacki (2020). ordinalClust: a package for analyzing ordinal data, R journal, 12[2], 173-188.
- regression with ordinal response and functional inputs
 - J. Jacques, S. Samardzic (2022). Analyzing cycling sensors data through ordinal logistic regression with functional covariates. Journal of the Royal Statistical Society, Series C, 71[4], 969-986.

Motivating data

Motivating study

- study about eating behaviors in France during the Covid-19 pandemic
- what is the impact of lockdown in terms of sustainable food?
- Iongitudinal study from March, 2020 to March, 2021

François-Lecompte A., Innocent M., Kréziak D., Prim-Allaz I. (2020), Confinement et comportements alimentaires : Quelles évolutions en matière d'alimentation durable ?, Revue Française de Gestion, 293/8, 55-80.

Motivating study

The survey consists of 55-78 questions, among which:

- In the last month, you would say that you have preferred in your purchases seasonal products:

 much less than before lockdown
 less than before lockdown
 a little less than before lockdown
 as before lockdown
 a little more much less than before lockdown
 more than before lockdown
 much more than before lockdown
- About the foods, you have the impression of wasting
- You have paid attention to the expiration dates

Motivating study

This period is ideal to rethink our way of consuming :

- □ high disagreement
- □ disagreement
- □ low disagreement
- □ neutral
- □ low agreement
- □ agreement
- \Box high agreementt
- This period is ideal to test more environmentally responsible ways of living

A longitudinal study

The surveys has been conduced at 5 times:

- March 26 April 5, 2020: beginning of the 1st lockdown
- April 30 May 11, 2020: end of the 1st lockdown
- June 9 June 16, 2020: post-lockdown
- October 28 November 9, 2020: beginning of the 2nd lockdown
- March 5 March 25, 2021: just before the 3rd lockdown

Number of participants: from 724 (for the 1st survey) to 337 (who answered to the 5 surveys)

Number of questions: from 78 (for the 1st survey) to 55 (for the 5th survey)

Extract typical consumption behavior of French people during pandemic, and in particular how these behaviors **have evolved**

Extract typical consumption behavior of French people during pandemic, and in particular how these behaviors **have evolved**

We are faced to a **clustering** question, with:

- ordinal variables
- repeated measurements along time

We need a clustering method for ordinal longitudinal data

Related work

Ordinal data

- Ordinal data occur when the categories are ordered
- Ordinality is a characteristic of the meaning of measurements [Stevens, 1946]
- Distinct levels of an ordinal variable differ in degree of dissimilarity

S. S. Stevens. "On the Theory of Scales of Measurement". In: Science 103.2684 (June 1946), pp. 677–680

Bad practices with ordinal data

- They are often transformed into quantitative data (Likert scale)
 - \Rightarrow introduces an *artificial* notion of distance between categories
 - \Rightarrow could lead to bias in the analysis
- ► Sometimes, they are considered as nominal categoridal data ⇒ lost of order information

Ordinal data modelling and clustering (1/2)

McParland & Gormley, 2011; Ranalli & Rocci, 2016:

- ordinal variables are viewed as a discretization of Gaussian latent variables
- clustering: Gaussian Mixture Model (GMM)

Giordan and Diana, 2011; Jollois and Nadif, 2009:

- ordinal variables are assumed to arise from a constrained multinomial distribution,
- constraints are imposed to respect the ordinal properties : unimodal distribution with decrease of the probabilities around the mode
- clustering: Mixture Model with the constrained multinomial

Ordinal data modelling and clustering (2/2)

D'Elia and Piccolo, 2005; Piccolo & Simone 2019; ...:

- define a distribution for ordinal data: the CUB model
- CUB model: mixture of Binomial and Uniform, to reflect respondent choice and uncertainty
- clustering: ?

Biernacki and Jacques, 2016

- define a distribution for ordinal data: the BOS model
- BOS model: parametric distribution with position and precision parameters
- clustering: mixture of BOS models
- extension to co-clustering (Selosse et al., 2020)

Longitudinal data clustering (1/3)

Mc Nicholas & Murphy, 2010:

- vector of repeated observations modellized by a Gaussians,
- covariance matrix decomposition in term expressing time dependence (modified Choleski decomposition)
- clustering: GMM
- adapted only for univariate data

Cagnone et al., 2018; Komárek et al., 2014

- consider Generalized Linear Model
- need covariates (without covariates such models are equivalent to multinomial ones)

Vávra et al., 2021:

- binary, ordinal and continuous variables are assumed to come from latent Gaussian variables
- clustering: GMM
- may take into account covariate

Longitudinal data clustering (2/3)

Recent approaches consider longitudinal data as **three-way data**, where:

Уi,j,t

- is the observation of:
 - variable j
 - at time t
 - for individual i

Modelling can be done using matrix-variate distributions

Longitudinal data clustering (3/3)

Matrix-variate distribution approaches:

- Mixture of Matrix Normal distributions (MMN): Virolli, 2011, 2012;
- Mixture of non-normal skewed distribution: Dogru et al. 2016; Gallaugher et al., 2018; Melnykov et al., 2018, 2019

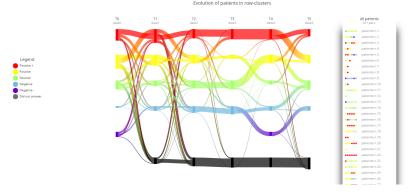
Advantages of matrix-variate approaches:

- parsimony of modelling without conditional independence assumption
- interpretability

Longitudinal ordinal data clustering

In Selosse et al. (2019):

- independent ordinal data clustering using the BOS model are performed at each time
- path of individual among the clusters are a posteriori studied



M. Selosse, J. Jacques, C. Biernacki and F. Cousson-Gélie (2019). Analyzing health quality survey using constrained co-clustering model for ordinal data and some dynamic implication, Journal of the Royal Statistical Society, Series C, 68 [5], 1327-1349.

Our idea

- consider ordinal variables as a discretization of Gaussian latent variables
- consider Mixture of Matrix Normal distribution for the latent variables
- \Rightarrow Mixture of Ordinal Matrices model: MOM

The MOM model

Ordinal distribution

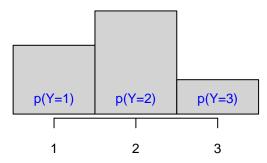
Y is an ordinal variable taking value in a set of C ordinal levels, coded {1, 2, ..., C}

▶ The distribution of *Y* is defined by

p(Y=c)

for any $c \in \{1, 2, \dots, C\}$

Representation for C = 3 levels:



levels c

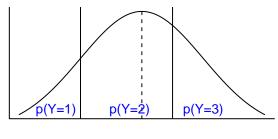
Hyp. 1: each ordinal variable Y is the manifestation of an underlying latent continuous variable Z:

$$Y = c$$
 if $\gamma_{c-1} < Z < \gamma_c$

where $-\infty = \gamma_0 \leq \gamma_1 \leq ... \leq \gamma_C = \infty$ are some thresholds.

• Hyp. 2:
$$Z \sim \mathcal{N}(\mu, \sigma^2)$$

Representation for C = 3 levels:



 $\gamma_1 \qquad \mu \quad \gamma_2$

The ordinal distribution of C is thus defined by:

- \blacktriangleright the parameters of the Gaussian: μ,σ^2
- ▶ the thresholds $\gamma_1, \ldots, \gamma_{C-1}$

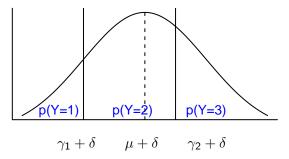
The ordinal distribution of C is thus defined by:

- the parameters of the Gaussian: μ, σ^2
- the thresholds $\gamma_1, \ldots, \gamma_{C-1}$

These parameters are not identifiable:

▶ adding any constant δ to μ and $\gamma_1, \ldots, \gamma_{C-1}$ does not change the distribution of Y

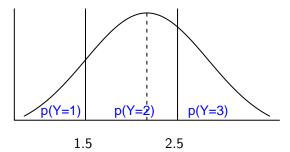
Representation for C = 3 levels:



In order to fix identifiability, we choose to fix the γ_c :

$$\{\gamma_1, \gamma_2, \dots, \gamma_{C-1}\} = \{1.5, 2.5, \dots, C - .5\}$$

Representation for C = 3 levels:



Three-ways data

Let's go back to our 3-ways data:

• for each individual, we observe a $J \times T$ matrix of ordinal data:

$$y_i = (y_{i,j,t})_{j,t}$$

Notations:

- $\mathcal{O}^{J \times T}$: set of ordinal $J \times T$ -matrices, in which row j takes values in $\{1, \ldots, C_j\}$.
- $\triangleright R = \# \mathcal{O}^{J \times T}$
 - ► each $\tilde{Y}_r \in \mathcal{O}^{J \times T}$ is generated by a portion Ω_r of the latent space $\mathbb{R}^{J \times T}$ according to thresholds $\gamma := \{\gamma_j\}_{j=1}^J$
 - $\tilde{Y}_i = (\tilde{Y}_{i1}, \dots, \tilde{Y}_{iR})$: one-hot encoding of \tilde{Y}_i , s.t. if the *r*-th pattern is observed then $\tilde{Y}_{ir} = 1$ and any other entry in the vector equals zero.

Latent matrix normal distribution

Let's go back to our 3-ways data:

• for each individual, we observe a $J \times T$ matrix of ordinal data:

$$y_i = (y_{i,j,t})_{j,t}$$

each y_i is assumed to be the realization of a ordinal random matrix:

Y

itself coming from an underlying continuous random matrix Z distributed according to a matrix normal distribution

$$Z \sim \mathcal{MN}_{(J \times T)}(M, \Phi, \Sigma)$$

Matrix Normal distribution

Parameters of $\mathcal{MN}_{(J \times T)}(M, \Phi, \Sigma)$ are:

M ∈ ℝ^{J×T}: matrix of means,
Φ ∈ ℝ^{T×T}: covariances between the *T* times
Σ ∈ ℝ^{J×J}: covariances between the *J* variables

The p.d.f. $f(Z|M, \Phi, \Sigma)$ is:

$$(2\pi)^{-\frac{TJ}{2}} |\Phi|^{-\frac{J}{2}} |\Sigma|^{-\frac{T}{2}} \exp\left\{-\frac{1}{2} tr[\Sigma^{-1}(Z-M)\Phi^{-1}(Z-M)^{\mathsf{T}}]\right\}.$$

Matrix normal vs multivariate normal distribution

Matrix Normal distribution is a specific multivariate Normal distribution :

$$Z \sim \mathcal{MN}_{(J imes \mathcal{T})}(M, \Phi, \Sigma) \Leftrightarrow \mathsf{vec}(Z) \sim \mathcal{N}_{J\mathcal{T}}(\mathsf{vec}(M), \Phi \otimes \Sigma)$$

where:

The property of rewriting the general covariance matrix $\Psi \in \mathbb{R}^{JT \times TJ}$ as $\Psi = \Phi \otimes \Sigma$ is called **separability condition**.

Matrix normal vs multivariate normal distribution

Advantage of the Matrix normal distribution:

interpretability:

- Φ express the time dependence
- Σ express the dependence between variables

parsimony:

- $\Phi \otimes \Sigma$ has J(J+1)/2 + T(T+1)/2 parameters
- a full covariance matrix of size JT has JT(JT + 1)/2 parameters
- ex: J = T = 5: 30 versus 325 parameters

In presence of an heterogeneous data set of matrix variate data $(y_i)_i$, we assume that they are realizations of an matrix ordinal variable Y coming from a latent continuous Z issued from a finite **Mixture of Matrix-Normals** (MMN) distribution:

$$f(Z|\boldsymbol{\pi}, \boldsymbol{\Theta}) = \sum_{k=1}^{K} \pi_k \phi^{(J \times T)}(Z|M_k, \Phi_k, \Sigma_k),$$

In presence of an heterogeneous data set of matrix variate data $(y_i)_i$, we assume that they are realizations of an matrix ordinal variable Y coming from a latent continuous Z issued from a finite **Mixture of Matrix-Normals** (MMN) distribution:

$$f(Z|\boldsymbol{\pi}, \boldsymbol{\Theta}) = \sum_{k=1}^{K} \pi_k \phi^{(J \times T)}(Z|M_k, \Phi_k, \Sigma_k),$$

Let introduce $\ell_i \in \{0,1\}^K$ s.t. $\ell_{ik} = 1$ is y_i belong to cluster k.

Model-based clustering

The generative process is then:

$$\ell_i \sim \mathcal{M}(1, \pi), \ \pi := (\pi_1, \dots, \pi_K) \ Z_i | \ell_{ik} = 1 \sim \mathcal{M} \mathcal{N}_{(J imes T)}(Z_i | \Theta_k), \ \Theta_k := \{M_k, \Phi_k, \Sigma_k\} \ ilde{Y}_i | Z_i, \ell_{ik} = 1 \sim \mathcal{M}(1, \boldsymbol{\xi}_i), \ \boldsymbol{\xi}_i := (\mathbf{1}_{\Omega_1}(Z_i), \dots, \mathbf{1}_{\Omega_R}(Z_i))$$

Note that the last step is not stochastic since only one elements of ξ_i is equal to 1.

Model-based clustering

The joint density of $(Y_i^{\overline{R}}, Z_i, \ell_i)$ is then:

$$f(Y_i^R, Z_i, \ell_i) = f(Y_i^R | Z_i, \ell_i) f(Z_i | \ell_i) f(\ell_i).$$

with

$$f(\ell_i) = \prod_{k=1}^{K} \pi_k^{\ell_{ik}}$$

$$f(Z_i|\ell_i) = \prod_{k=1}^{K} \left[\phi^{(J \times T)}(Z_i|\Theta_k) \right]^{\ell_{ik}}$$

$$f(\tilde{Y}_i|Z_i,\ell_i) = \prod_{r=1}^{R} \mathbf{1}_{\Omega_r}(Z_i)^{Y_{ir}^R}$$

Model-based clustering

The joint density of $(Y_i^{\overline{R}}, Z_i, \ell_i)$ is then:

$$f(Y_i^R, Z_i, \ell_i) = f(Y_i^R | Z_i, \ell_i) f(Z_i | \ell_i) f(\ell_i)$$

with

$$f(\ell_i) = \prod_{k=1}^{K} \pi_k^{\ell_{ik}}$$

$$f(Z_i|\ell_i) = \prod_{k=1}^{K} \left[\phi^{(J \times T)}(Z_i|\Theta_k) \right]^{\ell_{ik}}$$

$$f(\tilde{Y}_i|Z_i,\ell_i) = \prod_{r=1}^{R} \mathbf{1}_{\Omega_r}(Z_i)^{Y_{ir}^R}$$

The parameter to estimate are:

$$\boldsymbol{\Theta} := \{\pi_k, M_K, \Phi_k, \Sigma_k\}_{k=1}^K$$

Inference

Maximum likelihood estimation

We have to estimate:

$$\boldsymbol{\Theta} := \{\pi_k, M_K, \Phi_k, \Sigma_k\}_{k=1}^K$$

from the observed data:

$$\tilde{\mathbf{Y}} := \{\tilde{Y}_i\}_{n=1}^N$$

in presence of latent variables:

$$Z := \{Z_i\}_{i=1}^N$$
, and $\ell := \{\ell_i\}_{i=1}^N$

Maximum likelihood estimation

We have to estimate:

$$\boldsymbol{\Theta} := \{\pi_k, M_K, \Phi_k, \Sigma_k\}_{k=1}^K$$

from the observed data:

$$\tilde{\mathbf{Y}} := \{\tilde{Y}_i\}_{n=1}^N$$

in presence of latent variables:

$$Z := \{Z_i\}_{i=1}^N$$
, and $\ell := \{\ell_i\}_{i=1}^N$

 $\Rightarrow \text{EM algorithm}$

EM algorithm

Starting from an initialization $\Theta^{(0)},$ the EM algorithm is an iterative algorithm which alternates

$$\mathcal{Q}(\Theta,\Theta^{(s)}) := \mathbb{E}(\log \mathcal{L}(\Theta; \tilde{\mathbf{Y}}, \mathsf{Z}, \ell) | \Theta^{(s)}, \tilde{\mathbf{Y}})$$

$$\boldsymbol{\Theta}^{(s+1)} = \arg \max_{\boldsymbol{\Theta}} \mathcal{Q}(\boldsymbol{\Theta}, \boldsymbol{\Theta}^{(s)})$$

until convergence of the log-likelihood.

EM algorithm - E step

The complete log-likelihood log $\mathcal{L}(\Theta; \tilde{\mathbf{Y}}, \mathbf{Z}, \ell)$ is:

$$\sum_{i=1}^{N} \left\{ \sum_{r=1}^{R} \tilde{Y}_{ir} \mathbf{1}_{\Omega_{r}}(Z_{i}) + \sum_{k=1}^{K} \ell_{ik} \left[\log(\pi_{k}) - \frac{TJ}{2} \log(2\pi) - \frac{J}{2} \log(|\Phi_{k}|) - \frac{T}{2} \log(|\Sigma_{k}|) - \frac{1}{2} tr[\Sigma_{k}^{-1}(Z_{i} - M_{k})\Phi_{k}^{-1}(Z_{i} - M_{k})^{\mathsf{T}}] \right] \right\}.$$

EM algorithm - E step

Computing $\mathcal{Q}(\boldsymbol{\Theta}, \boldsymbol{\Theta}^{(s)})$ requires to compute:

•
$$\mathbb{E}(\ell_{ik}|\tilde{Y}_{ir}=1,\hat{\Theta}^{(s)}) = \frac{\pi_k^{(s)} \int_{\Omega_r} f(Z|\Theta_k^{(s)}) dZ}{\sum_{k=1}^K \pi_k^{(s)} \int_{\Omega_r} f(Z|\Theta_k^{(s)}) dZ} =: \tau_{ik}^{(s+1)}$$

• $\mathbb{E}(z_i|\ell_{ik}=1, \tilde{Y}_{ir}=1, \hat{\Theta}^{(s)}) =: m_{ik}^{(s+1)}$
• $\mathbb{E}(z_i z_i^{\mathsf{T}}|\ell_{ik}=1, \tilde{Y}_{ir}=1, \hat{\Theta}^{(s)}) =: S_{ik}^{(s+1)}$

The terms involving z_i requires to compute the moments of a truncated matrix-variate Gaussian, what is a complex task. In order to avoid it, a **Gibbs sampler** is considered.

Note that we work the vectorisation version of z_i for practical reasons

EM algorithm - M step

All the updates of the M step are explicit:

$$\begin{split} \hat{\pi}_{k}^{(s+1)} &= \frac{\sum_{i=1}^{N} \hat{\tau}_{ik}^{(s+1)}}{N} \\ \hat{M}_{k}^{(s+1)} &= \frac{\sum_{i=1}^{N} \hat{\tau}_{ik}^{(s+1)} \hat{M}_{ik}^{(s+1)}}{\sum_{i=1}^{N} \hat{\tau}_{ik}^{(s+1)}} \\ \hat{\pi}_{k}^{(s+1)} &= \frac{\sum_{i=1}^{N} \tau_{ik}^{(s+1)} [D_{ik}^{(s+1)} - \hat{M}_{k}^{(s+1)} \hat{\Phi}_{k}^{-1(s)} M_{ik}^{\mathsf{T}(s+1)} - M_{ik}^{(s+1)} \hat{\Phi}_{k}^{-1(s)} \hat{M}_{k}^{\mathsf{T}(s+1)} + \hat{M}_{k}^{(s+1)} \hat{\Phi}_{k}^{-1(s)} \hat{M}_{k}^{\mathsf{T}(s+1)}]}{T \sum_{i=1}^{N} \tau_{ik}^{(s+1)}} \\ \hat{\Phi}_{k}^{(s+1)} &= \frac{\sum_{i=1}^{N} \tau_{ik}^{(s+1)} [C_{ik}^{(s+1)} - \hat{M}_{k}^{\mathsf{T}(s+1)} \hat{\Sigma}_{k}^{-1(s+1)} M_{ik}^{(s+1)} - M_{ik}^{\mathsf{T}(s+1)} \Sigma_{k}^{-1(s+1)} \hat{M}_{k}^{(s+1)} + \hat{M}_{k}^{\mathsf{T}(s+1)} \hat{\Sigma}_{k}^{-1(s+1)} \hat{M}_{k}^{(s+1)}}{J \sum_{i=1}^{N} \tau_{ik}^{(s+1)}} \end{split}$$

Initialization

The initialization $\Theta^{(0)}$ can be:

- multiple random initialization
- ▶ using kmeans++, applied on the vectorized version of the data

The number of cluster K is selected by minimizing the BIC criterion

$$\textit{BIC}_k = -2 \log \mathcal{L}(oldsymbol{\Theta}; \widetilde{f Y}) +
u \log N$$

where ν is the number of model parameters:

$$\nu = K - 1 + K(JT) + KJ(J+1)/2 + KT(T+1)/2$$

Numerical study on simulated data

Numerical study on simulated data

Goals:

- check that parameter estimation is consistent with N
- compare the different initialization strategies
- robustness to noise
- evaluate the efficiency of BIC to choose K
- comparison with competitors (continuous model)

Simulation setup

20 data sets simulated according to the MOM model:

•
$$K = 3, J = T = 5, C_j = 5, \pi = (.3, .4, .3)$$

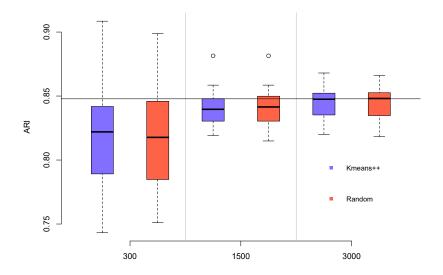
- each sample is drawn from a matrix-variate Gaussian (with M_1 , M_2 and M_3 constant matrix of resp. 1.75, 2.5 and 3.25, and identity covariance matrices) and then discretized using $\gamma = (1.5, 2.5, 3.5, 4.5)$
- ▶ *N* ∈ {300, 1500, 3000}
- in each data set, a proportion of noise is added using a uniform distribution over the levels: 0% (scenario 1),10% (scenario 2), 20% (scenario 3)

Indicators

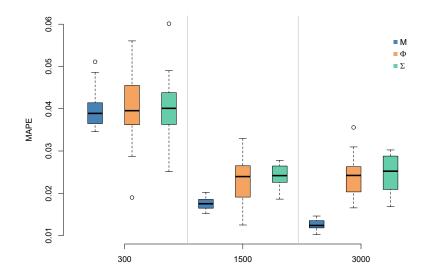
Efficiency is evaluated thanks to:

- Adjusted Rand Index (ARI) between the estimated partition and the actual one
- MAPE between the estimated parameters and the actual ones

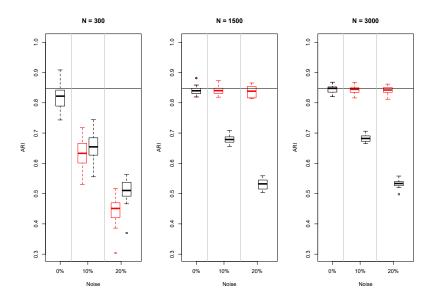
Influence of initialization and sample size



Influence of initialization and sample size



Robustness to noise



Model selection

Number of choice of K among $\{1, \ldots, 6\}$

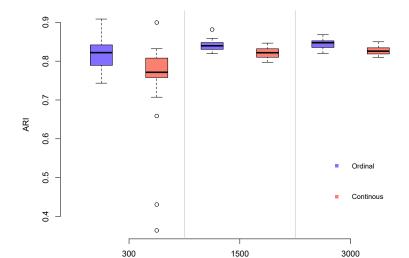
Scenario $ au = 0$							
N/K	1	2	3	4	5	6	
300	0	14	6	0	0	0	
1500	0	0	20	0	0	0	
3000	0	0	20	0	0	0	

Scenario $ au=$ 0.1							
N/K	1	2	3	4	5	6	
300	0	20	0	0	0	0	
1500	0	0	20	0	0	0	
3000	0	0	20	0	0	0	

Scenario $\tau = 0.2$							
N/K	1	2	3	4	5	6	
300	0	20	0	0	0	0	
1500	0	0	20	0	0	0	
3000	0	0	20	0	0	0	

Comparison with competitors

Our MOM model is compare to the Mixture of Matrix Normal distribution applied on levels $\{1,\ldots,5\}$ as they were continuous numbers in $\mathbb R$



Real data application

The data

- study about eating behaviors in France during the Covid-19 pandemic
- what is the impact of lockdown in terms of sustainable food?
- Iongitudinal study from March, 2020 to March, 2021

For our analysis: - a subset of J = 11 questions is considered -N = 337 individuals have answered to each of the T = 5 surveys each questions has ordinal answer on $C_i = 7$ levels

François-Lecompte A., Innocent M., Kréziak D., Prim-Allaz I. (2020), Confinement et comportements alimentaires : Quelles évolutions en matière d'alimentation durable ?, Revue Française de Gestion, 293/8, 55-80.

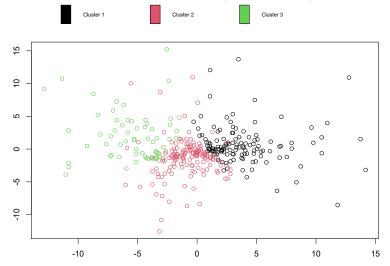
The 11 questions

- Q5: In the last month, you would say that you have preferred in your purchases:
 - (1) Seasonal products
 - (2) Products "Bio"
 - (3) Local products
 - (4) Fair trade products
 - (5) Bulk products (excluding fruit and vegetables)
- Q8: Choose the appropriate answer for each item
 - (1) About the foods, you have the impression of wasting
 - (2) You have paid attention to the expiration dates
 - (3) You have prepared anti-waste cooking recipes
- Q12: Would you say
 - (1) This period is ideal to rethink our way of consuming
 - (2) This period is ideal to test more environmentally responsible ways of living
 - (3) This period is ideal to learn how to consume less

Results

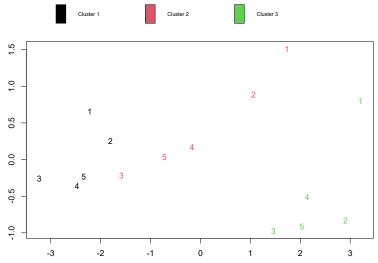
BIC selects K = 3 clusters (among $1, \ldots, 6$).

Representation of the 337 individuals (using isoMDS):



Results

Time evolution of clusters means (isoMDS)

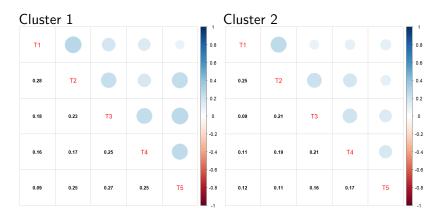


Cluster interpretation

Cluster 1:

- 124 units,
- overall neutrality-level and stable means
- lockdown has no effect on them
- Cluster 3:
 - 64 units,
 - overall neutrality-level for Q5 and Q8 macro-groups
 - high level for Q12 macro group ("rethinking-way-of-life" questions)
 - Iockdown has definitevely had an impact on them
- Cluster 2:
 - 149 units,
 - intermediate between the Cluster 1 and Cluster 3,
 - close to Cluster 3 at the begining, and close to Cluster 1 at the end
 - they want to change their life when they are on lockdown, but they quickly return to their usual habits once the confinement is over

Time covariance matrices



Correlation between distant times is indeed higher for Cluster 1 than for Cluster 2.

Conclusion and future works

Conclusions and future works

Conclusions

- model-based longitudinal clustering algorithm for ordinal data
- respect the true nature of ordinal data
- parsimonious modelling
- nice interpretation properties (time and variable covariance matrice)
- R package under development
- preprint : https://hal.science/hal-04105669

Future works

- investigated more parsimonious models through covariance matrix reparametrization
- add non ordinal data to be able to cluster longitudinal mixed-type data