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My works on ordinal data

I modle-based clustering of ordinal data
I C. Biernacki and J. Jacques (2016), Model-based clustering of

multivariate ordinal data relying on a stochastic binary search algorithm,
Statistics and Computing, 26 [5], 929-943.

I co-clustering of ordinal data
I J. Jacques and C. Biernacki (2018), Model-based co-clustering for ordinal

data, Computational Statistics and Data Analysis, 123, 101-115.
I M. Selosse, J. Jacques, C. Biernacki and F. Cousson-Gélie (2019).

Analyzing health quality survey using constrained co-clustering model for
ordinal data and some dynamic implication, Journal of the Royal
Statistical Society, Series C, 68 [5], 1327-1349.

I R package for classification, clustering and co-clustering of ordinal data
I M. Selosse, J. Jacques and C. Biernacki (2020). ordinalClust: a package

for analyzing ordinal data, R journal, 12[2], 173-188.
I regression with ordinal response and functional inputs

I J. Jacques, S. Samardzic (2022). Analyzing cycling sensors data through
ordinal logistic regression with functional covariates. Journal of the Royal
Statistical Society, Series C, 71[4], 969-986.



Motivating data



Motivating study

I study about eating behaviors in France during the Covid-19
pandemic

I what is the impact of lockdown in terms of sustainable food?
I longitudinal study from March, 2020 to March, 2021

François-Lecompte A., Innocent M., Kréziak D., Prim-Allaz I. (2020), Confinement et
comportements alimentaires : Quelles évolutions en matière d’alimentation durable ?,
Revue Française de Gestion, 293/8, 55-80.



Motivating study

The survey consists of 55-78 questions, among which:

I In the last month, you would say that you have preferred in
your purchases seasonal products:
� much less than before lockdown
� less than before lockdown
� a little less than before lockdown
� as before lockdown
� a little more much less than before lockdown
� more than before lockdown
� much more than before lockdown

I About the foods, you have the impression of wasting

I You have paid attention to the expiration dates

I . . .



Motivating study

I This period is ideal to rethink our way of consuming :
� high disagreement
� disagreement
� low disagreement
� neutral
� low agreement
� agreement
� high agreementt

I This period is ideal to test more environmentally responsible
ways of living

I . . .



A longitudinal study

The surveys has been conduced at 5 times:

I March 26 - April 5, 2020: beginning of the 1st lockdown
I April 30 - May 11, 2020: end of the 1st lockdown
I June 9 - June 16, 2020: post-lockdown
I October 28 - November 9, 2020: beginning of the 2nd

lockdown
I March 5 - March 25, 2021: just before the 3rd lockdown

Number of participants: from 724 (for the 1st survey) to 337 (who
answered to the 5 surveys)

Number of questions: from 78 (for the 1st survey) to 55 (for the
5th survey)



Motivating question

Extract typical consumption behavior of French people during
pandemic, and in particular how these behaviors have evolved

We are faced to a clustering question, with:

I ordinal variables
I repeated measurements along time

We need a clustering method for ordinal longitudinal data
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Related work



Ordinal data

I Ordinal data occur when the categories are ordered
I Ordinality is a characteristic of the meaning of measurements

[Stevens, 1946]
I Distinct levels of an ordinal variable differ in degree of

dissimilarity

S. S. Stevens. “On the Theory of Scales of Measurement”. In: Science 103.2684
(June 1946), pp. 677–680



Bad practices with ordinal data

I They are often transformed into quantitative data (Likert
scale)
⇒ introduces an artificial notion of distance between categories
⇒ could lead to bias in the analysis

I Sometimes, they are considered as nominal categoridal data
⇒ lost of order information



Ordinal data modelling and clustering (1/2)

McParland & Gormley, 2011; Ranalli & Rocci, 2016:

I ordinal variables are viewed as a discretization of Gaussian
latent variables

I clustering: Gaussian Mixture Model (GMM)

Giordan and Diana, 2011; Jollois and Nadif, 2009:

I ordinal variables are assumed to arise from a constrained
multinomial distribution,

I constraints are imposed to respect the ordinal properties :
unimodal distribution with decrease of the probabilities around
the mode

I clustering: Mixture Model with the constrained multinomial



Ordinal data modelling and clustering (2/2)

D’Elia and Piccolo, 2005; Piccolo & Simone 2019; . . . :

I define a distribution for ordinal data: the CUB model
I CUB model: mixture of Binomial and Uniform, to reflect

respondent choice and uncertainty
I clustering: ?

Biernacki and Jacques, 2016

I define a distribution for ordinal data: the BOS model
I BOS model: parametric distribution with position and precision

parameters
I clustering: mixture of BOS models
I extension to co-clustering (Selosse et al., 2020)



Longitudinal data clustering (1/3)
Mc Nicholas & Murphy, 2010:

I vector of repeated observations modellized by a Gaussians,
I covariance matrix decomposition in term expressing time

dependence (modified Choleski decomposition)
I clustering: GMM
I adapted only for univariate data

Cagnone et al., 2018; Komárek et al., 2014

I consider Generalized Linear Model
I need covariates (without covariates such models are equivalent

to multinomial ones)

Vávra et al., 2021:

I binary, ordinal and continuous variables are assumed to come
from latent Gaussian variables

I clustering: GMM
I may take into account covariate



Longitudinal data clustering (2/3)

Recent approaches consider longitudinal data as three-way data,
where:

yi ,j,t
is the observation of:

I variable j
I at time t
I for individual i

Modelling can be done using matrix-variate distributions



Longitudinal data clustering (3/3)

Matrix-variate distribution approaches:

I Mixture of Matrix Normal distributions (MMN): Virolli, 2011,
2012;

I Mixture of non-normal skewed distribution: Dogru et al. 2016;
Gallaugher et al., 2018; Melnykov et al., 2018, 2019

Advantages of matrix-variate approaches:

I parsimony of modelling without conditional independence
assumption

I interpretability



Longitudinal ordinal data clustering
In Selosse et al. (2019):

I independent ordinal data clustering using the BOS model are
performed at each time

I path of individual among the clusters are a posteriori studied

M. Selosse, J. Jacques, C. Biernacki and F. Cousson-Gélie (2019). Analyzing health
quality survey using constrained co-clustering model for ordinal data and some dynamic
implication, Journal of the Royal Statistical Society, Series C, 68 [5], 1327-1349.



Our idea

I consider ordinal variables as a discretization of Gaussian
latent variables

I consider Mixture of Matrix Normal distribution for the
latent variables

⇒ Mixture of Ordinal Matrices model: MOM



The MOM model



Ordinal distribution
I Y is an ordinal variable taking value in a set of C ordinal levels,

coded {1, 2, . . . ,C}

I The distribution of Y is defined by
p(Y = c)

for any c ∈ {1, 2, . . . ,C}

Representation for C = 3 levels:

levels c

1 2 3

p(Y=1) p(Y=2) p(Y=3)



Latent Gaussian assumption
I Hyp. 1: each ordinal variable Y is the manifestation of an

underlying latent continuous variable Z :

Y = c if γc−1 < Z < γc

where −∞ = γ0 ≤ γ1 ≤ ... ≤ γC =∞ are some thresholds.

I Hyp. 2: Z ∼ N (µ, σ2)

Representation for C = 3 levels:

p(Y=1) p(Y=2) p(Y=3)

γ1 µ γ2



Latent Gaussian assumption
The ordinal distribution of C is thus defined by:

I the parameters of the Gaussian: µ, σ2
I the thresholds γ1, . . . , γC−1

These parameters are not identifiable:

I adding any constant δ to µ and γ1, . . . , γC−1 does not change
the distribution of Y

Representation for C = 3 levels:

p(Y=1) p(Y=2) p(Y=3)

γ1 + δ µ+ δ γ2 + δ
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Latent Gaussian assumption

In order to fix identifiability, we choose to fix the γc :

{γ1, γ2, . . . , γC−1} = {1.5, 2.5, . . . ,C − .5}

Representation for C = 3 levels:

p(Y=1) p(Y=2) p(Y=3)

1.5 2.5



Three-ways data

Let’s go back to our 3-ways data:

I for each individual, we observe a J × T matrix of ordinal data:

yi = (yi ,j,t)j,t

Notations:

I OJ×T : set of ordinal J × T -matrices, in which row j takes
values in {1, . . . ,Cj}.

I R = #OJ×T

I each Ỹr ∈ OJ×T is generated by a portion Ωr of the latent
space RJ×T according to thresholds γ := {γj}Jj=1

I Ỹi = (Ỹi1, . . . , ỸiR): one-hot encoding of Ỹi , s.t. if the r -th
pattern is observed then Ỹir = 1 and any other entry in the
vector equals zero.



Latent matrix normal distribution

Let’s go back to our 3-ways data:

I for each individual, we observe a J × T matrix of ordinal data:

yi = (yi ,j,t)j,t

I each yi is assumed to be the realization of a ordinal random
matrix:

Y
I itself coming from an underlying continuous random matrix

Z distributed according to a matrix normal distribution

Z ∼MN (J×T )(M,Φ,Σ)



Matrix Normal distribution

Parameters ofMN (J×T )(M,Φ,Σ) are:

I M ∈ RJ×T : matrix of means,
I Φ ∈ RT×T : covariances between the T times
I Σ ∈ RJ×J : covariances between the J variables

The p.d.f. f (Z |M,Φ,Σ) is:

(2π)−
TJ
2 |Φ|−

J
2 |Σ|−

T
2 exp

{
−1
2tr[Σ

−1(Z −M)Φ−1(Z −M)ᵀ]
}
.



Matrix normal vs multivariate normal distribution

Matrix Normal distribution is a specific multivariate Normal
distribution :

Z ∼MN (J×T )(M,Φ,Σ)⇔ vec(Z ) ∼ NJT (vec(M),Φ⊗ Σ)

where:

I vec(.) is the vectorization operator
I ⊗ is the Kronecker product.

The property of rewriting the general covariance matrix
Ψ ∈ RJT×TJ as Ψ = Φ⊗ Σ is called separability condition.



Matrix normal vs multivariate normal distribution

Advantage of the Matrix normal distribution:

I interpretability:
I Φ express the time dependence
I Σ express the dependence between variables

I parsimony:
I Φ⊗ Σ has J(J + 1)/2 + T (T + 1)/2 parameters
I a full covariance matrix of size JT has JT (JT + 1)/2

parameters
I ex: J = T = 5: 30 versus 325 parameters



Model-based clustering

In presence of an heterogeneous data set of matrix variate data
(yi)i , we assume that they are realizations of an matrix ordinal
variable Y coming from a latent continuous Z issued from a finite
Mixture of Matrix-Normals (MMN) distribution:

f (Z |π,Θ) =
K∑

k=1
πkφ

(J×T )(Z |Mk ,Φk ,Σk),

Let introduce `i ∈ {0, 1}K s.t. `ik = 1 is yi belong to cluster k.
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Model-based clustering

The generative process is then:

`i ∼M(1,π), π := (π1, . . . , πK )
Zi |`ik = 1 ∼MN (J×T )(Zi |Θk), Θk := {Mk ,Φk ,Σk}

Ỹi |Zi , `ik = 1 ∼M(1, ξi), ξi := (1Ω1(Zi), . . . , 1ΩR (Zi))

Note that the last step is not stochastic since only one elements of
ξi is equal to 1.



Model-based clustering
The joint density of (Y R

i ,Zi , `i) is then:

f (Y R
i ,Zi , `i) = f (Y R

i |Zi , `i)f (Zi |`i)f (`i).
with

f (`i) =
K∏

k=1
π`ikk

f (Zi |`i) =
K∏

k=1

[
φ(J×T )(Zi |Θk)

]`ik
f (Ỹi |Zi , `i) =

R∏
r=1

1Ωr (Zi)Y
R
ir

The parameter to estimate are:

Θ := {πk ,MK ,Φk ,Σk}Kk=1
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Inference



Maximum likelihood estimation

We have to estimate:

Θ := {πk ,MK ,Φk ,Σk}Kk=1

from the observed data:

Ỹ := {Ỹi}Nn=1

in presence of latent variables:

Z := {Zi}Ni=1, and ` := {`i}Ni=1

⇒ EM algorithm
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EM algorithm

Starting from an initialization Θ(0), the EM algorithm is an
iterative algorithm which alternates

I the E step (Expectation): compute

Q(Θ,Θ(s)) := E(logL(Θ; Ỹ,Z, `)|Θ(s), Ỹ)

I the M step (Maximisation): compute

Θ(s+1) = arg max
Θ
Q(Θ,Θ(s))

until convergence of the log-likelihood.



EM algorithm - E step

The complete log-likelihood logL(Θ; Ỹ,Z, `) is:

N∑
i=1

{ R∑
r=1

Ỹir1Ωr (Zi)+
K∑

k=1
`ik

[
log(πk)−TJ

2 log(2π)−J
2 log(|Φk |)−

T
2 log(|Σk |)−

1
2 tr [Σ−1k (Zi −Mk)Φ−1k (Zi −Mk)ᵀ]

]}
.



EM algorithm - E step

Computing Q(Θ,Θ(s)) requires to compute:

I E(`ik |Ỹir = 1, Θ̂(s)) =
π

(s)
k

∫
Ωr

f (Z |Θ(s)
k )dZ∑K

k=1 π
(s)
k

∫
Ωr

f (Z |Θ(s)
k )dZ

=: τ (s+1)
ik

I E(zi |`ik = 1, Ỹir = 1, Θ̂(s)) =: m(s+1)
ik

I E(zizᵀi |`ik = 1, Ỹir = 1, Θ̂(s)) =: S(s+1)
ik

The terms involving zi requires to compute the moments of a
truncated matrix-variate Gaussian, what is a complex task. In order
to avoid it, a Gibbs sampler is considered.

Note that we work the vectorisation version of zi for practical reasons



EM algorithm - M step

All the updates of the M step are explicit:

π̂
(s+1)
k =

∑N
i=1

τ̂
(s+1)
ik

N

M̂(s+1)
k =

∑N
i=1

τ̂
(s+1)
ik M̂(s+1)

ik∑N
i=1

τ̂
(s+1)
ik

Σ̂(s+1)
k =

∑N
i=1

τ
(s+1)
ik [D(s+1)

ik − M̂(s+1)
k Φ̂−1(s)

k Mᵀ(s+1)
ik − M(s+1)

ik Φ̂−1(s)
k M̂ᵀ(s+1)

k + M̂(s+1)
k Φ̂−1(s)

k M̂ᵀ(s+1)
k ]

T
∑N

i=1
τ

(s+1)
ik

Φ̂(s+1)
k =

∑N
i=1

τ
(s+1)
ik [C(s+1)

ik − M̂ᵀ(s+1)
k Σ̂−1(s+1)

k M(s+1)
ik − Mᵀ(s+1)

ik Σ−1(s+1)
k M̂(s+1)

k + M̂ᵀ(s+1)
k Σ̂−1(s+1)

k M̂(s+1)
k ]

J
∑N

i=1
τ

(s+1)
ik

.



Initialization

The initialization Θ(0) can be:

I multiple random initialization
I using kmeans++, applied on the vectorized version of the data



Model selection

The number of cluster K is selected by minimizing the BIC criterion

BICk = −2 logL(Θ; Ỹ) + ν logN

where ν is the number of model parameters:

ν = K − 1 + K (JT ) + KJ(J + 1)/2 + KT (T + 1)/2



Numerical study on simulated data



Numerical study on simulated data

Goals:

I check that parameter estimation is consistent with N
I compare the different initialization strategies
I robustness to noise
I evaluate the efficiency of BIC to choose K
I comparison with competitors (continuous model)



Simulation setup

I 20 data sets simulated according to the MOM model:
I K = 3, J = T = 5, Cj = 5, π = (.3, .4, .3)
I each sample is drawn from a matrix-variate Gaussian (with M1,

M2 and M3 constant matrix of resp. 1.75, 2.5 and 3.25, and
identity covariance matrices) and then discretized using
γ = (1.5, 2.5, 3.5, 4.5)

I N ∈ {300, 1500, 3000}
I in each data set, a proportion of noise is added using a uniform

distribution over the levels: 0% (scenario 1),10% (scenario 2),
20% (scenario 3)



Indicators

Efficiency is evaluated thanks to:

I Adjusted Rand Index (ARI) between the estimated partition
and the actual one

I MAPE between the estimated parameters and the actual ones



Influence of initialization and sample size
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Influence of initialization and sample size
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Robustness to noise
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Model selection
Number of choice of K among {1, . . . , 6}

Scenario τ = 0
N/K 1 2 3 4 5 6
300 0 14 6 0 0 0
1500 0 0 20 0 0 0
3000 0 0 20 0 0 0

Scenario τ = 0.1
N/K 1 2 3 4 5 6
300 0 20 0 0 0 0
1500 0 0 20 0 0 0
3000 0 0 20 0 0 0

Scenario τ = 0.2
N/K 1 2 3 4 5 6
300 0 20 0 0 0 0
1500 0 0 20 0 0 0
3000 0 0 20 0 0 0



Comparison with competitors
Our MOM model is compare to the Mixture of Matrix Normal
distribution applied on levels {1, . . . , 5} as they were continuous
numbers in R
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Real data application



The data

I study about eating behaviors in France during the Covid-19
pandemic

I what is the impact of lockdown in terms of sustainable food?
I longitudinal study from March, 2020 to March, 2021

For our analysis: - a subset of J = 11 questions is considered -
N = 337 individuals have answered to each of the T = 5 surveys -
each questions has ordinal answer on Cj = 7 levels

François-Lecompte A., Innocent M., Kréziak D., Prim-Allaz I. (2020), Confinement et
comportements alimentaires : Quelles évolutions en matière d’alimentation durable ?,
Revue Française de Gestion, 293/8, 55-80.



The 11 questions

I Q5: In the last month, you would say that you have preferred
in your purchases:
I (1) Seasonal products
I (2) Products “Bio”
I (3) Local products
I (4) Fair trade products
I (5) Bulk products (excluding fruit and vegetables)

I Q8: Choose the appropriate answer for each item
I (1) About the foods, you have the impression of wasting
I (2) You have paid attention to the expiration dates
I (3) You have prepared anti-waste cooking recipes

I Q12: Would you say
I (1) This period is ideal to rethink our way of consuming
I (2) This period is ideal to test more environmentally responsible

ways of living
I (3) This period is ideal to learn how to consume less



Results
BIC selects K = 3 clusters (among 1, . . . , 6).

Representation of the 337 individuals (using isoMDS):
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Results
Time evolution of clusters means (isoMDS)
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Cluster interpretation
I Cluster 1:

I 124 units,
I overall neutrality-level and stable means
I lockdown has no effect on them

I Cluster 3:
I 64 units,
I overall neutrality-level for Q5 and Q8 macro-groups
I high level for Q12 macro group (“rethinking-way-of-life”

questions)
I lockdown has definitevely had an impact on them

I Cluster 2:
I 149 units,
I intermediate between the Cluster 1 and Cluster 3,
I close to Cluster 3 at the begining, and close to Cluster 1 at the

end
I they want to change their life when they are on

lockdown, but they quickly return to their usual habits
once the confinement is over



Time covariance matrices

Cluster 1 Cluster 2

Correlation between distant times is indeed higher for Cluster 1 than
for Cluster 2.



Conclusion and future works



Conclusions and future works

Conclusions

I model-based longitudinal clustering algorithm for ordinal
data

I respect the true nature of ordinal data
I parsimonious modelling
I nice interpretation properties (time and variable covariance

matrice)
I R package under development
I preprint : https://hal.science/hal-04105669

Future works

I investigated more parsimonious models through covariance
matrix reparametrization

I add non ordinal data to be able to cluster longitudinal
mixed-type data

https://hal.science/hal-04105669
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