Nonlinear CUB models

Marica Manisera & Paola Zuccolotto University of Brescia, Italy

• The unconscious Decision Process (DP) driving individuals' responses on a rating scale

nac

- Focus: the Feeling phase of the DP in CUB and NLCUB models
- Transition Probabilities and Transition Plot
- Linear and Nonlinear DPs
- NLCUB
- Case study: Standard Eurobarometer 78 (SYRTO: "SYstemic Risk TOmography: Signals, Measurements, Transmission Channels, and Policy Interventions", grant from the European Union Seventh Framework Programme - Project ID: 320270)

Express a rating from 1 (=completely unsatisfied) to 5 (=completely satisfied)

be unconsciuos

Express a rating from 1 (=completely unsatisfied) to 5 (=completely satisfied)

Feeling phase: reasoned and logical thinking, the set of emotions, perceptions, subjective evaluations that individuals have with regard to the latent trait being evaluated

Uncertainty phase Expressed rating

Express a rating from 1 (=completely unsatisfied) to 5 (=completely satisfied)

Feeling phase: reasoned and logical thinking, the set of emotions, perceptions, subjective evaluations that individuals have with regard to the latent trait being evaluated

Uncertainty phase: *indecision inherently present in any human choice, not depending on the individuals' position on the latent variable*

Express a rating from 1 (=completely unsatisfied) to 5 (=completely satisfied)

Feeling phase: *reasoned and logical thinking, the set of emotions, perceptions, subjective evaluations that individuals have with regard to the latent trait being evaluated*

Uncertainty phase: *indecision inherently present in any human choice, not depending on the individuals' position on the latent variable*

Expressed rating: *a combination of the first two phases*

Express a rating from 1 (=completely unsatisfied) to 5 (=completely satisfied)

Feeling phase CUB: (shifted) Binomial random variable (V)

be unconsciuos

$$b_r(\xi) = P(V = r) = \binom{m-1}{r-1} \xi^{m-r} (1-\xi)^{r-1}$$

Express a rating from 1 (=completely unsatisfied) to 5 (=completely satisfied)

Feeling phase CUB: (shifted) Binomial random variable (V)

$$b_r(\xi) = P(V = r) = \binom{m-1}{r-1} \xi^{m-r} (1-\xi)^{r-1}$$

Uncertainty phase CUB: Uniform random variable (U)

$$P(U=r) = 1/m$$

Express a rating from 1 (=completely unsatisfied) to 5 (=completely satisfied)

Feeling phase CUB: (shifted) Binomial random variable (V)

$$b_r(\xi) = P(V = r) = \binom{m-1}{r-1} \xi^{m-r} (1-\xi)^{r-1}$$

Uncertainty phase CUB: Uniform random variable (U)

$$P(U=r)=1/m$$

Expressed rating CUB: mixture of V and U (R)

$$P(R = r \mid \boldsymbol{\theta}) = \pi b_r(\xi) + (1 - \pi) P(U = r)$$

Express a rating from 1 (=completely unsatisfied) to 5 (=completely satisfied)

Feeling phase: reasoned and logical thinking, the set of emotions, perceptions, subjective evaluations that individuals have with regard to the latent trait being evaluated

- We assume that the Feeling phase proceeds through T consecutive steps.
- At each step a basic judgement is formulated.
- Step-by-step, the basic judgements are accumulated and transformed into provisional ratings.
- The last provisional rating corresponds to the rating at the end of the Feeling phase.

- We assume that the Feeling phase proceeds through T consecutive steps.
- At each step a basic judgement is formulated.
- Step-by-step, the basic judgements are accumulated and transformed into provisional ratings.
- The last provisional rating corresponds to the rating at the end of the Feeling phase.

- We assume that the Feeling phase proceeds through T consecutive steps.
- At each step a basic judgement is formulated.
- Step-by-step, the basic judgements are accumulated and transformed into provisional ratings.
- The last provisional rating corresponds to the rating at the end of the Feeling phase.

- We assume that the Feeling phase proceeds through T consecutive steps.
- At each step a basic judgement is formulated.
- Step-by-step, the basic judgements are accumulated and transformed into provisional ratings.
- The last provisional rating corresponds³to the rating at the end of the Feeling phase.

B

TRANSITION PROBABILITIES

Probability to move to provisional rating 2 in the next step given that the provisional rating in the present step is 1

be Feelin

DASE

6

TRANSITION PROBABILITIES

Probability to move to provisional rating 2 in the next step given that the provisional rating in the present step is 1

Probability to move to provisional rating 3 in the next step given that the provisional rating in the present step is 2

Probability to move to provisional rating 3 in the next step given that the provisional rating in the present step is 2 Provisional

rating

TRANSITION PROBABILITIES

$$\phi_t(s) = Pr(R_{t+1} = s+1|R_t = s)$$

$$r = 4$$

he Feeliv

Dhase

TRANSITION PROBABILITIES

$$\phi_t(s) = Pr(R_{t+1} = s + 1 | R_t = s)$$

In CUB models:

$$\phi_t(s) = 1 - \xi$$

for all *t* and *s*

The Hee

IASE

Step	B Am I satisfied? ment No!
1	
2	
3	
4	
5	
6	
7	
8	

Step	B Am I satisfied? ment No!
1	Am I satisfied? Yes or no? Yes!
2	
3	
4	
5	
6	
7	
8	

The Feeling Idse B

What happens in a NLCUB model? $T \ge m-1$ steps in the Feeling phase (for example, let T = 8) Likertization function (d) g₅=1 S $g_s = |d^{-1}(s)|$ g₄=1 4 Expressed Rating (r) g₃=4 Э g₂=2 2 $g_1 = 1$ anni 2 W11 W₁₂ W_{14} W22 W13 W₂₃ W₃₃ W43 W15 2 5 7 0 1 3 4 6 8

The Feelin base

TRANSITION PROBABILITIES

$$\phi_t(s) = Pr(R_{t+1} = s + 1 | R_t = s)$$

et
$$T = 8$$
)

$$R_{t}$$

$$1$$

$$2$$

$$2$$

$$2$$

$$3$$

$$3$$

$$3$$

$$3$$

$$3$$

be Feelin

Dhase - L

TRANSITION PROBABILITIES

$$\phi_t(s) = Pr(R_{t+1} = s+1 | R_t = s)$$

In NLCUB models:

$$\phi_t(s) = (1-\xi) \frac{\binom{t}{w_{g_s s}} (1-\xi)^{w_{g_s s}} \xi^{t-w_{g_s s}}}{\sum_{h=1}^{g_s} \binom{t}{w_{hs}} (1-\xi)^{w_{hs}} \xi^{t-w_{hs}}}$$

The Feeli.

base

TRANSITION PROBABILITIES

$$\phi_t(s) = Pr(R_{t+1} = s+1 | R_t = s)$$

In NLCUB models:

Different values for different *t* and *s*

The Feelin

base

TRANSITION PROBABILITIES

$$\phi_t(s) = Pr(R_{t+1} = s+1 | R_t = s)$$

$$\phi(s) = av_t(\phi_t(s))$$

"Perceived closeness" between rating s and s + 1

$$\delta_s = h(\phi(s))$$
 for example $\delta_s = -\log(\phi(s))$

"'Perceived distance" between rating s and s + 1

TRANSITION PLOT

A broken line joining points $(s, \tilde{\phi}(s))$, where $s = 0, \cdots, m - 1$

- $\tilde{\phi}(s) = (\delta_1 + \dots + \delta_s)/(\delta_1 + \dots + \delta_{m-1})$
- i.e.: the cumulated "perceived distances".
- It gives an idea of the state of mind of respondents toward the rating scale.

TRANSITION PLOT - CUB model

[be transition plot

ratings

TRANSITION PLOT - NLCUB model

perceived ratings

The transition plot

ratings

LINEAR DECISION PROCESS

DEFINITION: A DP is said to be linear if $\phi_{t_1}(s_1) = \phi_{t_2}(s_2) = \phi, \forall s_1, s_2, t_1, t_2 : \exists \phi_{t_1}(s_1), \phi_{t_2}(s_2).$

- $\phi_t(s)$: all equal \leftrightarrow LINEAR DP
- $\phi_t(s)$: different values \leftrightarrow NONLINEAR DP

LINEAR DECISION PROCESS

DEFINITION: A DP is said to be linear if $\phi_{t_1}(s_1) = \phi_{t_2}(s_2) = \phi, \forall s_1, s_2, t_1, t_2 : \exists \phi_{t_1}(s_1), \phi_{t_2}(s_2).$

- $\phi_t(s)$: all equal \leftrightarrow LINEAR DP
- $\phi_t(s)$: different values \leftrightarrow NONLINEAR DP
- LINEAR DP \rightarrow Linear transition plot
- NONLINEAR DP \rightarrow Nonlinear transition plot

LINEAR DECISION PROCESS

PROPOSITION: A sufficient condition for a discrete additive DP to be linear is that $\forall s, d^{-1}(s)$ is composed by a single value and $d^{-1}(1), \dots, d^{-1}(m)$ are equally spaced in \mathbb{R} , that is $d^{-1}(s+1) - d^{-1}(s) = k$ for all s.

inear vs. Nonlinear

NonLinear CUB models

- Derive from a different assumed mechanism in the Feeling phase (the other phases are unchanged)
- Allow us to model nonlinear DPs, gaining insight about the state of mind toward the rating scale
- Include traditional CUB models as a special case

NonLinear CUB models

- Derive from a different assumed mechanism in the Feeling phase (the other phases are unchanged)
- Allow us to model nonlinear DPs, gaining insight about the state of mind toward the rating scale
- Include traditional CUB models as a special case

NonLinear CUB models

- Derive from a different assumed mechanism in the Feeling phase (the other phases are unchanged)
- Allow us to model nonlinear DPs, gaining insight about the state of mind toward the rating scale
- Include traditional CUB models as a special case

Express a rating from 1 (=completely unsatisfied) to 5 (=completely satisfied)

Feeling phase NLCUB: a random variable (A)

$$P(A = r) = \sum_{y \in l^{-1}(r)} Pr\{V(T+1,\xi) = y\}$$

Uncertainty phase CUB: Uniform random variable (U)

$$P(U=r) = 1/m$$

Expressed rating CUB: mixture of V and U (R)

$$P(R = r \mid \boldsymbol{\theta}) = \pi P(A = r) + (1 - \pi) P(U = r)$$

Likelihood function

$$L(\boldsymbol{\theta}|\mathbf{s}) = \sum_{i=1}^{n} \log \left\{ \pi \left[\sum_{h=1}^{g_{s_i}} \binom{T}{w_{hs_i}} (1-\xi)^{w_{hs_i}} \xi^{T-w_{hs_i}} \right] + (1-\pi) \frac{1}{m} \right\}$$

(to be maximized via likelihood profiling) We have to fix a maximum value for T

Likelihood function

$$L(\boldsymbol{\theta}|\mathbf{s}) = \sum_{i=1}^{n} \log \left\{ \pi \left[\sum_{h=1}^{g_{s_i}} \binom{T}{w_{hs_i}} (1-\xi)^{w_{hs_i}} \xi^{T-w_{hs_i}} \right] + (1-\pi) \frac{1}{m} \right\}$$

- A sample survey covering the national population of citizens of the 27 European Union Member States
- QA3.2: "How would you judge the current situation of the European economy?" (very bad, rather bad, rather good, very good)
- We present results for Greece, Germany, Italy

Greece	ξ	π	g_1	g_2	g_3	g_4
NLCUB	0.7413	0.9999	1	1	1	1
CUB	0.7413	0.9999	1*	1^*	1^*	1*
		$\phi(1)$	$\phi(2)$	$\phi(3)$	ϕ	μ
NLCUB		0.2587	0.2587	0.2587	0.2587	0.7761
CUB		0.2587	0.2587	0.2587	0.2587	0.7761

Greece - CUB Model (diss=0.0198)

CUB

Greece	ξ	π	g_1	g_2	g_3	g_4
NLCUB	0.7413	0.9999	1	1	1	1
CUB	0.7413	0.9999	1*	1^{*}	1^{*}	1*
		$\phi(1)$	$\phi(2)$	$\phi(3)$	ϕ	μ
NLCUB		0.2587	0.2587	0.2587	0.2587	0.7761
CUB		0.2587	0.2587	0.2587	0.2587	0.7761

ratings

Germany	ξ	π	g_1	g_2	g_3	g_4
NLCUB	0.6167	0.9925	1	2	2	1
CUB	0.5964	0.9999	1^*	1*	1*	1*
		$\phi(1)$	$\phi(2)$	$\phi(3)$	ϕ	μ
NLCUB		0.3833	0.1057	0.0258	0.2416	1.2080
CUB		0.4036	0.4036	0.4036	0.4036	1.2108

Germany - NLCUB Model (diss=0.013)

Germany - CUB Model (diss=0.2007)

NLCUB

Germany	ξ	π	g_1	g_2	g_3	g_4
NLCUB	0.6167	0.9925	1	2	2	1
CUB	0.5964	0.9999	1*	1*	1*	1*
		$\phi(1)$	$\phi(2)$	$\phi(3)$	ϕ	μ
NLCUB		0.3833	0.1057	0.0258	0.2416	1.2080
CUB		0.4036	0.4036	0.4036	0.4036	1.2108

ratings

NLCUB

AX

Italy	ξ	π	g_1	g_2	g_3	g_4
NLCUB	0.8512	0.9999	1	2	4	1
CUB	0.7525	0.9999	1*	1^{*}	1*	1^{*}
		$\phi(1)$	$\phi(2)$	$\phi(3)$	ϕ	μ
NLCUB		0.1487	0.0249	8.7e-06	0.1069	0.7484
CUB		0.2475	0.2475	0.2475	0.2475	0.7425

Italy - CUB Model (diss=0.1564)

CUB

Italy	ξ	π	g_1	g_2	g_3	g_4
NLCUB	0.8512	0.9999	1	2	4	1
CUB	0.7525	0.9999	1*	1^{*}	1*	1^{*}
		$\phi(1)$	$\phi(2)$	$\phi(3)$	ϕ	μ
NLCUB		0.1487	0.0249	8.7e-06	0.1069	0.7484
CUB		0.2475	0.2475	0.2475	0.2475	0.7425

CUB

ratings

- All respondents from the three Countries exhibit a very low uncertainty
- Some differences can be observed from the feeling point of view: Italian respondents are the most pessimistic about European economy, immediately followed by Greek respondents. German people, instead, are more confident.

- All respondents from the three Countries exhibit a very low uncertainty
- Some differences can be observed from the feeling point of view: Italian respondents are the most pessimistic about European economy, immediately followed by Greek respondents. German people, instead, are more confident.

- Greece shows a linear transition plot: in general, for Greek respondents to move, for instance, from rating 1 to 2 is as hard as from rating 3 to 4.
- Instead, German and Italian respondents find it easier to move from rating 1 to 2 than from rating 3 to 4.

- Greece shows a linear transition plot: in general, for Greek respondents to move, for instance, from rating 1 to 2 is as hard as from rating 3 to 4.
- Instead, German and Italian respondents find it easier to move from rating 1 to 2 than from rating 3 to 4.

Basic References

- D'Elia A., Piccolo D. (2005) A mixture model for preference data analysis. *Comput Stat Data An*, 49, 917-934.
- Iannario M., Piccolo D. (2009) A program in R for CUB models inference, Version 2.0, available at http://www.dipstat.unina.it/CUBmodels1/
- Iannario M., Piccolo D. (2011) CUB Models: Statistical Methods and Empirical Evidence, in: Kenett, R. S. and Salini, S. (eds.), *Modern Analysis of Customer Surveys,* Wiley, NY, 231–254.
- Manisera M., Zuccolotto P. (2013) Modelling rating data with Nonlinear CUB models, *Forthcoming*.
- Piccolo D. (2003) On the moments of a mixture of uniform and shifted binomial random variables, *Quaderni di Statistica*, 5, 85–104.