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1 Introduction

This thesis is about overtaking in Formula 1, the world’s most prestigious mo-
tor racing competition. We aim to analyze which different factors such as DRS,
pit-stops, tires, rules,... influence the number of overtakes during a Formula 1
race.

Therefore, we will introduce in section 2 the sport Formula 1 and explain the
different rules and regulations. Moreover, we will explain the different fixed
effects used in our analysis about overtaking.

Since our analysis is based on the article ”Overtaking in Formula 1 during
the Pirelli era: A driver-level analysis” (de Groote, 2021), we will explain the
model and the main baseline results of the article. We use the Poisson regression
model to determine the expected number of places gained and lost by a driver
on a specific track and during a specific season.

In section 3, we will generate synthetic data following the Poisson distribu-
tion. We simulate data of the 2024 Formula 1 season, consisting of 24 races.
Moreover, using our simulated data we are able to rank the drivers depending
on their average performance. In addition, we will estimate the different pa-
rameters of the regression model, we used to generate our synthetic data.

Before starting with the analysis of the data about overtaking in Formula 1,
we will give an explanation of regression, especially Poisson regression. In ad-
dition, we will describe two methods to estimate the parameters used in the
Poisson regression i.e. least squares estimation and maximum likelihood esti-
mation. Moreover, we will explain the likelihood function.
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1.1 Regression

Regression is a statistical method, which is used in different disciplines such as
finance, testing automobiles, neuroscience... etc. This method helps us to find
a relation between a dependent variable, which is the main factor we are trying
to understand or predict, and one or more independent variables (explanatory
variables), which are the factors that may have an impact on our dependent
variable. To fit a linear model to observed data, we need to determine if there
exists a relation between the variables of interest, which means that there exists
some significant association between the two variables. In addition, we use the
correlation coefficient, a value between −1 and 1, to determine the strength of
the association between the variables. On the one hand, if we have a negative
correlation value, we have a negative association between variables, which means
that increasing values in one variable corresponds to decreasing values in the
other variable. On the other hand, if we have a positive correlation value, we
have a positive association, which means that increasing values in one variable
corresponds to increasing values in the other variable. However, if the correla-
tion value is close to 0, we have no association between the variables.
Let’s consider a set of observations (x1, y1), (x2, y2)...(xn, yn), we can compute
the correlation coefficient using the following formula:

rxy =
Sxy

SxSy
=

∑
(xi − x̄)(yi − ȳ)√

(
∑

(xi − x̄)2)(
∑

(yi − ȳ)2)
,

where Sx, Sy are the sample standard deviation, Sxy is the sample covariance
and x̄, ȳ are the sample means.
Regression analysis is used to find trends in the data and provides us with an
equation for a graph, used to make predictions about our data.

Moreover, we often use linear regression, which creates a linear relationship
between two variables. The graph of linear regression is a straight line, where
the slope defines how the change in one variable impacts the other one.
We have the following definition of Simple Linear Regression Model: We have
the parameters β0, the intercept of the true regression line (average value of Y
when x = 0), β1, the slope of the true regression line (expected average change
in Y associated with a one unit increase in the value of x) and the variance σ2.
For any fixed value of the independent variable X, the dependent variable Y is
a random variable following the model equation:

Y = β0 + β1X + ϵ,

where the quantity ϵ is the ’error’ (random deviation), a random variable as-
sumed to be symmetrically distributed with E(ϵ) = 0 and V ar(ϵ) = σ2

ϵ = σ2.
The reasons for this error ϵ can for example be outliers and high leverage points,
correlation of error terms, collinearity or an effect of deleted variables in the
model. Let us recall the definition of an outlier and a high leverage point.
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An outlier in a regression model is a point with an extreme y-value relative
to the regression line. A high leverage point is a data point with an extreme
x-value relative to the other data points. However, this point may still follow
the general linear trend of the data (Figure 1).
Moreover, a high leverage point can also be considered as an outlier (Figure
1) if, in addition to the extreme x-value relative to the other data points, we
also have an extreme y-value relative to the regression line. If a high leverage
point still follows the general linear trend (extreme x-value still lies close to the
regression line), it can not be an outlier.

Figure 1: The first graph shows the situation where we have an outlier and a
high leverage point. In the second graph, we have the situation where a high
leverage point is an outlier.

Let us look at a graph of a true regression line (Figure 2), by considering n
independent observations, where the points (x1, y1), . . . (xn, yn) are scattered
around the line.

Figure 2: Graph of a true regression line
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We can calculate the sample mean and variance of Y , when X is viewed as
controlled by the experimentator or when X is considered to be a random vari-
able. In the first case, we have the following equations: E(Y ) = β0 + β1X
and V ar(Y ) = σ2. In the second case, we consider the conditional mean and
conditional variance of Y given X = x as follows: E(Y |x) = β0 + β1x and
V ar(Y |x) = σ2.
Moreover, our model is completely described when we know the values of β0, β1
and σ2. However, these parameters are generally unknown and ϵ is unobserved.
The determination of the linear regression model depends on the estimation of
the parameters. In addition, to determine the parameters, there are various
methods, such as least squares estimation or maximum likelihood estimation.

Least squares estimation
For the least squares estimation we consider a sample of sets of n observation,
(x1, y1), . . . , (xn, yn), which satisfy the simple linear regression model. Hence
we can write:

yi = β0 + β1xi + ϵi,with i ∈ {1, . . . , n}

To estimate the parameters β0 and β1, we minimize the sum of squares of the
difference between the observations and the line in the scatter diagram. Re-
call that a scatter diagram pairs numerical data and creates a relation between
them. The diagram has one variable on each axis. For the least square estima-
tion we have three types of differences depending on the perspective. Firstly, we
have the vertical difference between the observations and the line of the scatter
diagram (Figure 3), which is also called method of direct regression.

Figure 3: vertical difference between the observations and the line of the scatter
diagram
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This direct regression method minimizes the sum of squares, using the following
formula:

S(β0, β1) =

n∑
i=1

ϵ2i =

n∑
i=1

(yi − β0 − β1xi)
2, with respect to β0 and β1.

Moreover, we can calculate the partial derivatives of S(β0, β1) with respect to
β0 and β1:

∂S(β0, β1)

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi)

∂S(β0, β1)

∂β1
= −2

n∑
i=1

(yi − β0 − β1xi)xi

Hence, we obtain the solutions of β0 and β1 by setting

∂S(β0, β1)

∂β1
= 0 and

∂S(β0, β1)

∂β0
= 0

Let us solve both equations:

∂S(β0, β1)

∂β0
= 0

⇔ −2

n∑
i=1

(yi − β0 − β1xi) = 0

⇔ nȳ − nβ0 − nβ1x̄ = 0

⇔ β0 = ȳ − β1x̄
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and:

∂S(β0, β1)

∂β1
= 0

⇔ −2

n∑
i=1

(yi − β0 − β1xi)xi = 0

⇔
n∑

i=1

yixi −
n∑

i=1

β0xi −
n∑

i=1

β1x
2
i = 0

⇔
n∑

i=1

yixi − (ȳ − β1x̄)

n∑
i=1

xi − β1

n∑
i=1

x2i = 0

⇔
n∑

i=1

yixi −
n∑

i=1

ȳxi + β1

n∑
i=1

x̄xi − β1

n∑
i=1

x2i = 0

⇔
n∑

i=1

xi(yi − ȳ) + β1

n∑
i=1

xi(x̄− xi) = 0

⇔ β1

n∑
i=1

xi(xi − x̄) =

n∑
i=1

xi(yi − ȳ)

⇔ β1 =

∑n
i=1 xi(yi − ȳ)∑n
i=1 xi(xi − x̄)

Hence, we have β̂0 = ȳ − β̂1x̄ and β̂1 =
∑n

i=1 xi(yi−ȳ)∑n
i=1 xi(xi−x̄) .

Moreover, let us have a look at the coefficient R-squared, noted R2. R2 is
defined as a number, indicating how well the independent variable in a statisti-
cal model explains the variation in the dependent variable. This number ranges
from 0 to 1 (Figure 4).

If R2 = 1, the model is a perfect fit to the data, i.e. all the variability in the
dependent variable is explained by the independent variable.
If R2 = 0, the independent variable does not explain the variability of the de-
pendent variable.
If R2 is a number between 0 and 1, we can interpret the R2 coefficient as follows:
”R2 · 100% of the variation in y is reduced by taking into account predictor x”.

Note that if the model is overfitted, the R2 value can be misleading. Therefore,
we should use the R2 value with other statistics and context.
Let us examine a figure showing a weak relation between y and x (Figure 5).
We have two lines, a horizontal line placed at the average response ȳ. The
second line is the estimated regression line ŷ. Moreover, the slope of ŷ is not
very steep, hence as x increases we do not have much of a change in the average
response y.
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Figure 4: The first figure on the left shows the situation where the model is
a perfect fit to the data, hence R2 = 1. The picture on the right displays
the situation where R2 = 0, meaning that the independent variable does not
influence the dependent variable. The last picture shows the situation where
R2 is a number between 0 and 1.

Figure 5: Regression plot

We have the following formula to calculate the coefficient R2:

R2 = 1− unexplained variation

total variation
.

In addition, we can also use the following notation for the formula of the coef-
ficient R2:

R2 =
SSR

SSTO
= 1− SSE

SSTO
,

SSR is the regression sum of squares, which quantifies how far the estimated
sloped regression line ŷi is from the horizontal line ȳ (mean).

SSR =

n∑
i=1

(ŷi − ȳ)2
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SSE is the error sum of squares (unexplained variation), which quantifies how
much data points yi vary around the estimated regression line ŷi. We start by
finding the regression line to visualize the relation between the dependent and
independent variables. This allows us to calculate the predicted values, then
subtract the actual values and to square the results. Finally, we sum all the
squared errors and obtain the unexplained variation (SSE).

SSE =

n∑
i=1

(yi − ŷi)
2

SSTO is the total sum of squares (total variation), which quantifies how much
the data points yi vary around the mean ȳ. For SSTO, we subtract the average
actual value from each of the actual values, square the results and sum them.

SSTO =

n∑
i=1

(yi − ȳ)2

Coming back to the different types of difference, we can consider the horizontal
difference between the line of the scatter diagram and observations (Figure 6),
then we obtain the reverse (or inverse) regression method.

Figure 6: horizontal difference between the line in the scatter diagram and
observations

Finally, we have the perpendicular distances between the observations and the
line in the scatter diagram (Figure 7), which gives us the orthogonal regression
or major axis regression method.
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Figure 7: perpendicular distance between observations and the line in the scatter
diagram

Furthermore, instead of minimizing the distance between the observations and
the line of the scatter diagram, we can use the reduced major axis regression
method (Figure 8). By definition, this method minimizes the sum of the areas
of rectangles defined between the observed data points and the nearest point on
the line in the scatter diagram, to estimate the regression coefficients.

Figure 8: reduced major axis regression method

Maximum likelihood estimation
We will have a closer look at the maximum likelihood estimation in the section
1.3 Log likelihood.
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1.2 Poisson regression

Poisson regression assumes a Poisson distribution, which is a discrete probability
distribution with parameter λ. This parameter is the mean number of events.
For the Poisson distribution the variance is equal to the mean. Moreover, the
Poisson distribution is used to predict the number of events occurring within a
given interval of time or space. The probability that k events occur in the same

interval is: P (k) = λke−λ

k! .
Poisson regression is usually used to model count data, which are discrete data
with only nonnegative values, because the coefficients are exponential. As we
are using the Poisson distribution, we usually collect data that happen within
a certain interval of time or space. Moreover, using the formula for the linear
regression, seen above, we obtain the following expression:

E(Yi) = β0 + β1Xi,

which gives us the idea to apply to count data. However, if we model the
mean of the distribution as a linear function in X, then we risk to get negative
counts and the variability will not be a function in X. Hence, to avoid the
normal regression errors, we often use a ln or log transformation because the
Poisson regression contains no error term as the mean equals the variance for the
Poisson distribution. The ln transformation describes the relationship between
the dependent and independent variable. We have the following formula:

ln(E(Yi)) = ln(λi) = β0 + β1Xi,

where the observed counts Yi follow the Poisson distribution with parameter λi
for i ∈ {1, . . . , n}. The Poisson parameter is given as a function of the indepen-
dent variables.
Let us have a look at the technical conditions of the Poisson regression, which
allow us to conclude that the Poisson regression is an effective model to use.
Firstly, we see that the graph is a line because the mean is a linear function
of X: ln(λi) = β0 + β1Xi. Moreover, the observations are often described by
a simple random sample, hence the observations are independent. In addition,
the response variable is a count variable and we have no error term.

Poisson regression can be considered as a generalized linear model (GLM), which
generalizes linear regression by relating the linear model to the response variable
via a link function. In our case, the link function for the Poisson regression is
the log function. Consider Y to be the response variable following the Pois-
son distribution. Let x ∈ Rn be a vector of independent variables, then the
regression model is of the following form:

log(E(Y |x)) = α+ βx,

where α ∈ R and β ∈ Rn.
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Finally, we can compare the Poisson regression to the linear regression. Let us
write down the expression for the Poisson regression : ln(E(Yi)) = β0 + β1Xi,
where Yi ∼ P (expβ0+β1Xi) and the normal regression with log transformation:
E(ln(Yi)) = β0 + β1Xi , where ln(Yi) ∼ N(β0 + β1Xi, σ

2). One difference be-
tween the Poisson and normal regression is that the expected value or average
of the logs (normal regression) does not equal the log of the averages (Poisson
regression). Another difference is that the variability of the two models is cal-
culated differently, because the likelihood functions are different and hence we
obtain different estimates for the parameters.

1.3 Log likelihood

To understand the Log likelihood, we first need to explain the term likelihood.
Likelihood is used to describe the process of determining the best data dis-
tribution given a specific situation in the data. Therefore, we often use the
likelihood ratio test, which compares two models and the improvement with
respect to likelihood value. If we add more variables to a linear model, then
the likelihood value will improve. We have the following definition for likeli-
hood: Given a random sample Y1, . . . , Yn from a discrete distribution D with
an unknown parameter θ, we define the likelihood function by

L(θ; y1, . . . , yn) = pθY1,...,Yn
(y1, . . . , yn) = pθ(y1)

pθ(y2)
...pθ(yn)

,

where pθ is the Probability Mass Function (PMF) of each Yi. If Y1, . . . , Yn come
from a continuous distribution, we set

L(θ; y1, . . . , yn) = fθY1,...,Yn
(y1, . . . , yn) = fθ(y1)

fθ(y2)
...fθ(yn)

,

where fθ is the Probability Density Function (PDF) of each Yi.
Recall the definition of the Probability Mass Function: Let X be a discrete
random variable with range RX = {x1, x2, . . . } finite or countably infinite. The
function PX(xk) = P (X = xk), for k ∈ {1, 2, 3, . . . } is called the probability
mass function of X.
Moreover, we have the following definition for the Probability Density Function:
Consider a continuous random variable X with an absolutely continuous cumu-
lative distribution function (CDF) FX(x) = P (X ≤ x),∀x ∈ R. The function

fX(x) defined by fX(x) = dFX(x)
dx = F

′

X(x), if FX(x) is differentiable at x, is
called the Probability Density Function of X.
Moreover, we have the Poisson Log-Linear model, also called Poisson regression
model. By definition, it is a model for n responses Y1, ..., Yn that take integer
count values. Each Yi is an independent Poisson random variable with param-
eter λi and log λi is a linear combination of the covariates corresponding to the
ith observation. We treat the covariates as fixed constants and parameters are
the regression coefficients β. This model is often used in neuroscience to detect
spikes. Hence, we consider n time windows of length ∆, Yi are the number of
spikes in the ith time window.
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In addition, Y1.. . . , Yn are independent random variables with Yi ∼ P (λi∆).
The parameter λi controls the spiking rate in the ith time window and may be
influenced by a stimuli present in this ith window of time. However, to encode
this stimuli, applied in the ith time window by a set of p covariates xi1, . . . , xip,
a model for the Poisson rate, with parameter λ is given by:

log λi = β0 + β1xi1 + . . . + βpxip

Suppose a data set with two variables X and Y with the corresponding regres-
sion equation between the two. The likelihood tells us how likely it is that we
will get a similar dataset. In addition, we can measure the likelihood by taking
the log of the likelihood value and we obtain the Log likelihood. The higher the
value of the Log likelihood, the better is the model.
Let Y follow the Poisson distribution with parameter λ, which is determined by
a set of p predictors. Hence, we get the following expression for λ:

λ = exp{βTXi}

We consider Xi and β to be two vectors: β =


β0
β1
...
βp

 and Xi =


1
Xi1

...
Xip

.

For the ith observation, the Poisson regression model is given by:

P (Yi = yi|Xi,β) =
e− exp{βTXi} exp{βTXi}yi

yi!

Moreover, for a sample of size n, we get the likelihood for a Poisson regression:

L(β; y, (X1, ..., Xn)) =

n∏
i=1

e− exp{βTXi} exp{βTXi}yi

yi!
,

and we get the Log likelihood:

l(β) =

n∑
i=1

yiβ
TXi −

n∑
i=1

exp{βTXi} −
n∑

i=1

log(yi!)

Let us consider the situation where β and Xi are of the following form:

β =

(
β0
β1

)
and Xi =

(
1
xi

)

We obtain the formula of the linear regression line: βTXi = β0 + β1xi.
To determine the parameters β0, β1 and σ2, we can now use the method of
maximum likelihood estimation.
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For this estimation, we suppose that ϵi for i ∈ {1, . . . , n} are independent and
identically distributed and they follow the normal distribution N(0, σ2). We
have again the equation of the linear regression model:

yi = β0 + β1x1 + ϵi,with i ∈ {1, . . . , n}

and the observations yi for i ∈ {1, . . . , n} follow N(β0 + β1xi, σ
2).

To estimate the parameters β0, β1 and σ2 we can maximize the likelihood func-
tion L(xi, yi;β0, β1, σ

2) or the log likelihood function lnL(xi, yi;β0, β1, σ
2):

L(xi, yi;β0, β1, σ
2) =

n∏
i=1

(
1

2πσ2

)1/2

exp

[
− 1

2σ2
(yi − β0 − β1xi)

2

]
and

lnL(xi, yi;β0, β1, σ
2) = −

(n
2

)
ln 2π−

(n
2

)
lnσ2−

(
1

2σ2

) n∑
i=1

(yi−β0−β1xi)2

Let us solve the equation to find the parameters β0, β1 and σ2:

lnL(xi, yi;β0, β1, σ
2)

∂β0
= 0

⇔
(

1

σ2

) n∑
i=1

(yi − β0 − β1xi) = 0

⇔
n∑

i=1

(yi − β0 − β1xi) = 0

⇔ nȳ − nβ0 − nβ1x̄ = 0

⇔ β0 = ȳ − β1x̄
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and:

lnL(xi, yi;β0, β1, σ
2)

∂β1
= 0

⇔
(

1

σ2

) n∑
i=1

(yi − β0 − β1xi)xi = 0

⇔
n∑

i=1

(yi − β0 − β1xi)xi = 0

⇔
n∑

i=1

yixi −
n∑

i=1

β0xi −
n∑

i=1

β1x
2
i = 0

⇔
n∑

i=1

yixi − (ȳ − β1x̄)

n∑
i=1

xi − β1

n∑
i=1

x2i = 0

⇔
n∑

i=1

yixi −
n∑

i=1

ȳxi + β1

n∑
i=1

x̄xi − β1

n∑
i=1

x2i = 0

⇔
n∑

i=1

xi(yi − ȳ) + β1

n∑
i=1

xi(x̄− xi) = 0

⇔ β1

n∑
i=1

xi(xi − x̄) =

n∑
i=1

xi(yi − ȳ)

⇔ β1 =

∑n
i=1 xi(yi − ȳ)∑n
i=1 xi(xi − x̄)

and:

lnL(xi, yi;β0, β1, σ
2)

∂σ2
= 0

⇔ − n

2σ2
+

1

2σ4

n∑
i=1

(yi − β0 − β1xi)
2 = 0

⇔ n

2σ2
=

1

2σ4

n∑
i=1

(yi − β0 − β1xi)
2

⇔ nσ2 =

n∑
i=1

(yi − β0 − β1xi)
2

⇔ σ2 =

∑n
i=1(yi − β0 − β1xi)

2

n

Hence, we have the following results: β̂0 = ȳ − β̂1x̄, β̂1 =
∑n

i=1 xi(yi−ȳ)∑n
i=1 xi(xi−x̄) and

σ̂2 =
∑n

i=1(yi−β̂0−β̂1xi)
2

n
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2 Overtaking in Formula 1

2.1 Formula 1

2.1.1 Introduction in F1

Nowadays Formula 1, the world’s most prestigious motor racing competition,
gets more and more popular, capturing the attention of millions of spectators
around the world. The reason why Formula 1 is called Formula 1 is two-fold.
We use the term ”Formula” to describe a set of rules such as the car design,
engine size, component usage and so on. All competitors have to follow those
rules. The number 1 denotes that it is the premier formula.
Formula 1 exists since 1950, celebrating its 75 years in 2025 with a unique open-
ing show in London at the beginning of the season. To get a seat in Formula 1,
most drivers first participate in carting competitions, Formula 3 and Formula
2, where the cars are smaller and slower than Formula 1 cars. Moreover, to
make motorsport more diverse, inclusive and accessible, F1 Academy Racing
was created in 2023. F1 Academy allows female drivers to race against each
other and explore their own motorsport journeys.

Formula 1 is considered to be the highest class of international racing for single-
seater racing cars. Every driver wants to be the best, pushing themselves and
their racing car to the very limit. In order to do that, they need to be in top
shape, battling extreme g-forces, making daring decisions in the blink of an
eye while driving at a speed up to 370km/h. In addition, to the individual
performance of the driver, Formula 1 is also a team sport. There are different
engineers designing the car and also the pit-crew being able to change all 4 tires
in 2-3 seconds. As pit-stop we define the situation where a car stops in the pit
stalls during a race for usually a change of tires or even a quick maintenance or
mechanical repairs.
Drivers compete to win the F1 Driver’s Championship and they fight together
with their team for the F1 Constructor’s Championship.

In total, Formula 1 consists, as of 2025, of 10 different teams with each team
2 drivers. Each driver has an assigned number, which was introduced in 1973,
and the number 1 is assigned to the reigning world champion.
Some teams such as Ferrari (Figure 9) and McLaren competed since the begin-
ning of Formula 1, other teams such as Haas entered the competition for the
2016 season.

The F1 calender of 2025 consists of 24 race weekends (distance of every race is
almost always equal to the fewest number of laps that exceed 305 km in total),
including six F1 Sprint races (distance is equal to the fewest number of laps
needed to exceed a distance of 260km) (Figure 10). Each race is called Grand
Prix and they are held in different locations around the world. Some locations
were always part of the F1 calender such as Monaco or Silverstone, while others
are new additions such as Shanghai or Miami.
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Figure 9: Evolution of the F1 car over the years

Both race weekend and sprint weekend start on Thursday with a mediaday,
where the drivers give interviews answering questions about the past and the
upcoming Grand Prix. During the race weekend, we have two free practices
(each one lasting for an hour) on Friday, a third free practice and qualifying on
Saturday and the race is held on Sunday. For sprint weekend, we have only one
free practice on Friday together with the sprint qualifying. On Saturday, we
have the sprint race and qualifying and on Sunday the race.

Figure 10: The first picture shows the points distributed during a race and the
second picture shows the points distributed during a sprint race.
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2.1.2 Rules and Regulations

The rules and regulations in Formula 1 are set by the FIA (”Fédération inter-
nationale de l’Automobile”). Changes in rules and regulations have as primary
reasons to do with the safety of the drivers, such as better facilities and equip-
ment available in case of an accident. A lot of regulations are changed in order
to slow down the cars to a level where a Grand Prix can be driven relatively
safely. For example if cornering speed is too high, an accident in a corner could
result in the death of a driver.

Let us have a closer look at the regulation changes over the years:

In the first ten years of Formula 1, safety was almost a non-issue. Most tracks
didn’t have safety features, death was considered as an acceptable risk for win-
ning races.
Moreover, the technological progress was extremely slow compared to nowa-
days. There were no weight limits for the engine. A progress happened when
alcohol-based racing fuels were banned and replaced with commercial petrol.
The 1960s were the beginning of drivers lobbying for safer racing. Therefore
the FIA executed safety inspections of the track, which were previously done by
local authorities. Moreover, they introduced protective helmets, overalls and a
flag signalling code was established.
From 1966 to 1969, the cockpit was redesigned to allow a quick evacuation and
FIA introduced some recommendations such as seat harness, fire-resistant cloth-
ing and shatterproof visors. Moreover, straw bales were banned from being used
as safety barriers.
In the 1970s, Formula 1 cars became faster and the safety measures were not
adapted, hence causing a lot of deaths.
However, in 1978, because of the commitment of a lot of drivers, circuits were
improved with safety features, and new circuits with better safety features were
constructed. Those safety features are for example double guard rails in place,
three meter grass verges, sand traps, barriers between pit lane and track. The
track width and surface also play an important role for the safety. Moreover,
spectators need to keep a distance of minimum three meters behind the guard
railings.
In addition, new roles were introduced such as race supervisors, marshals and
signalers. Drivers need to be able to evacuate from their cockpit in less than five
seconds. Two mirrors were introduced to the cars and a better fire extinguisher
on board was required.
In the early 1980s, ground effects which created a huge amount of downforce
causing a lot of accidents, were banned. The aluminium material for chassis con-
struction was replaced by the much stronger carbon fibre, reducing the number
of fatalities.
Unfortunately, in 1994 FIA banned virtually all the performance enhancing elec-
tronic technology, such as ABS or traction control, which was needed by the
teams and caused the cars to become nervy and edgy to drive. Due to more
horsepower and less car stability, a lot of fatal accidents happened, such as the 3
accidents during the San Marino Grand Prix in 1994, causing a severely injured
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driver and two deaths including the death of Ayrton Senna. From there on,
safety became Formula 1’s number one concern.
Since 2010, refuelling the car during the race is no longer allowed. The intro-
duction of HANS i.e. head and neck support in 2003 and halo (driver crash-
protection system consisting of a curved bar placed above the driver’s head to
protect it) in 2018 were the last 2 major safety improvements.
Besides the safety issues, FIA faced another problem in 2008, namely dramatic
cost savings due to the world economic crisis. A lot of teams could no longer
afford to invest a huge amount of money and some teams such as Honda, Toyota
or BMW withdrew from the sport. FIA was able to control the cost escalations
thanks to implemented budget caps. The budget cap also called cost cap is a
financial regulation to limit the amount of money teams can spend annually on
designing and operating their cars.

In 2011, another big change for the aerodynamic of the cars was the intro-
duction of the driver adjustable rear wing. This rear wing also known as DRS
(drag reduction system) helps the drivers to overtake, by gaining speed. It can
only be used in the activation zone and the driver must be within 1 second of
the next car in the detection zone.
For 2026, there are new regulations planned to make the sport more agile, com-
petitive, sustainable and safer. These regulations change the aerodynamic of the
car, increase for example the battery power and also the use of 100% sustainable
fuels.

2.2 Theoretic framework

In the following analysis, we want to look into the detail of overtaking in For-
mula 1, to find out which variables are able to increase the number of overtakes.
Note that overtaking varies a lot on a race-to-race basis. Therefore, we need
overtaking data.

For our analysis we use the article ”Overtaking in Formula 1 during the Pirelli
era: A driver-level analysis” (de Groote, 2021) as a reference.

According to the article we define the notion of an overtake: an overtake is
a change of position on track. However, an on track position change such as
position change on the first lap, position change due to drivers yielding (i.e.
surrendering the place without fighting) or position change because of car prob-
lems are not considered to be an overtake. The number of overtakes is derived
from lap charts in combination with actual race footage. Actual race footage is
needed because passes may be obscured in lap charts by pit-stops or retirements.
Note that for our analysis, we don’t consider wet races i.e. a race where at least
one driver uses wet-weather tires at some point in the race. We only analyze
dry races to avoid the influence of bad weather.
Moreover we also exclude drivers who retire from a race before the end of the
first lap.
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Based on the article, the data set contains information about the number of
times any driver passed or was passed by another driver. We need the timing
information such as race order at the end of the first lap and fastest lap-time.
In addition, we also take into account race strategies for example the number
of pit-stops and timing of the first pit-stop.

2.3 Factors influencing the potential of overtaking

We have two factors which we can not observe directly: the overtake friendliness
of a track and the amount of wake turbulence produced by the cars.
Wake turbulence is a chaotic airflow, generated by the F1 car. This airflow has
a significant impact on the performance of a following car, i.e. it experiences a
loss of downforce or grip and an increase of drag. Moreover, wake tubulence
also influences the cooling system of the enginge and brakes, leading to an over-
heating of the car behind. Therefore, the driver has more problems to maintain
control of his car and needs to keep more distance to the car in front.
Our analysis focuses mainly on observable factors, that may influence overtak-
ing on the driver-level, to indirectly estimate those unobservable factors. Let us
have a look at the different categories of observable factors:

1) Effectiveness of DRS

2) Reliability of the car and field size:
Note that larger field size and better reliability of the car (i.e. lower breakdown
rates) increase the number of cars on track, and hence increase the likelihood
of overtaking.

3) Pit-stops:
In relation with pit-stops, let us first define three important notions to describe
the different positions of a driver on track. On the one hand, we define as back-
marker a car falling behind in a race, often they are lapped by the faster cars.
On the other hand, front-runners are the race leaders, fighting to win the race.
Moreover, we define the midfield consisting of the teams which are fighting for
lower points.

Pit-stops mix up the order of the cars and have a strong effect on overtak-
ing. We have the pit-lane overtaking and change in track position because of
different speed of cars, which creates new on-track battles and increases over-
taking. Moreover, pit-stops allow the teams to do an undercut or overcut to
overtake other cars. On the one hand, we define the undercut as a strategy
where a driver pits earlier than his rival who is in front, to gain an advantage
by using fresher tires. On the other hand, the overcut is a strategy to overtake
where a driver stays out on track longer than his rival, who pits earlier. This
allows the driver to be faster because of the cleaner air and lighter fuel load,
and he is able to gain a track position.
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Another important factor is the timing of the first pit-stop. If the first round of
pit-stops starts early (especially if front-runners pit earlier), drivers lose more
positions because the field is still close and it results in more overtaking. Un-
scheduled pit-stops, for example to repair accident damage, induce overtaking
especially if fast cars are involved.

4) Cars being out of position (i.e. mixing) after start and pit-stop:
If a driver starts in a worse position than what he would be based on his ex-
pected race pace, i.e. stronger race pace compared to qualifying pace, the driver
is more likely to overtake another car and less likely to be overtaken. In addi-
tion, we observe the opposite if a driver qualifies in a better place than expected,
his qualifying pace is stronger than race-pace. Moreover, we also have the pos-
sibility to be out of position at the beginning of the race because of a bad start
or grid penalty.

5) Safety car:
On the one hand, the safety car is able to eradicate the gaps between the cars,
which increases the amount of on-track battles and overtakes at the restart. On
the other hand, the virtual safety car preserves the gaps between the cars and
hence has less impact on racing. Therefore, we ignore virtual safety cars in our
analysis. In addition, we don’t consider safety cars after the start of the race or
at the very end of the race.
We use a dummy variable to determine whether or not a driver is likely to stop
again and a safety-car dummy, which is not directly observed. Note that the
safety-car dummy is a variable which gives us the information if there was a
safety-car period (no virtual-safety-car period) in between two green-flag peri-
ods, hence it does not count the number of safety-car periods. Moreover, we
consider a cut-off value of 75% of the race distance, which will be the amount
where we can expect the last pit-stops of the race.

2.4 Fixed effects models

Before looking into the detail of the formulas used in the article (de Groote,
2021), we start with an explanation of the different categories of fixed effects
used to analyze overtaking in Formula 1.
First let us define the term fixed effects in general before explaining the different
fixed effects used in our analysis in F1. We need to distinguish between the fixed
effects, random effects and mixed effects.

The fixed effects model is a method to control variables. We have two
different types of fixed effects: entity fixed effects, where the variables do not
change over time but across entities, and we have time fixed effects, where the
variables change over time but not across entities. Entities can for example be
individuals, families, companies or countries.
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In the following, we mainly use entity fixed effects for our analysis.
Therefore, using fixed effects we are able to observe the individual characteris-
tics of entities and to control their impact on the desired outcome.
Moreover, fixed effects estimation allows us to consider data on individuals with
multiple observations and to estimate effects only for those variables changing
during the observation period.
To analyze data with fixed effects, we use a regression model with dependent
and independent variables. The independent variables are binary variables also
called time-invariant dummy variables, i.e. a variable that takes a binary value
(0 or 1) to indicate the absence or presence of an effect (Equation 1).

Let us compare linear regression and fixed effects model. On the one hand,
we use linear regression to analyze the relation between dependent and inde-
pendent variables. Moreover, we usually use cross-sectional data in linear re-
gression, where we observe different groups such as individuals or countries at
a specific period of time i.e. one point in time.
On the other hand, fixed effects are often considered as a specific type of linear
regression, used to control variables. In addition, we mainly use panel data in
the fixed effects model, which means that we consider data from different groups
over many points in time.

The fixed effects regression model (i.e. entity fixed effects regression model)
is:

Yit = β0 + β1Xit + β2Zi + uit, (1)

where β0, β1 and β2 are parameters, i is the notation for entity and t the nota-
tion for time. We denote the error term with uit and it has conditional mean
zero, i.e. E(uit|Xi1, Xi2, ..., XiT ) = 0.
Yit is the outcome variable, Xit is the variable we are interested in measuring
the causal effect on Y . Moreover, Zi are the unobserved variables, which only
depend on the entities and are constant over time.

We can rewrite this formula in a different way. Let us combine β0 and β2Zi

as αi, we can consider αi as the fixed effect for the entity i and we obtain the
following formula:

Yit = β1Xit + αi + uit. (2)

To estimate the parameter β1 we use equation (2). We compute the average of
this equation and obtain:

1

T

T∑
t=1

Yit = β1
1

T

T∑
t=1

Xit + αi +
1

T

T∑
t=1

uit.

Note that, since αi does not depend on t, we have 1
T

∑T
t=1 αi = αi. We can

rewrite the average equation as follows:

Ȳit = β1X̄it + αi + ūit. (3)

21



Now we compute (2)-(3):

Yit − Ȳit = β1Xit − β1X̄it + αi − αi + uit − ūit

⇒ Yit − Ȳit = β1(Xit − X̄it) + (uit − ūit)

Let Ỹit = Yit − Ȳit, X̃it = Xit − X̄it and ũit = uit − ūit. We use the least
square estimation to find the expression for β1. We need to minimize the sum
of squared residuals and to compute the derivative with respect to β1 and set it
to 0:

∂

∂β1

(
N∑
i=1

T∑
t=1

(Ỹit − β1X̃it)
2

)
= 0

⇔ ∂

∂β1

(
N∑
i=1

T∑
t=1

(Ỹ 2
it − 2Ỹitβ1X̃it + β2

1X̃
2
it)

)
= 0

⇔ −2

N∑
i=1

T∑
t=1

(
ỸitX̃it − β1X̃

2
it

)
= 0

⇔
N∑
i=1

T∑
t=1

ỸitX̃it =

N∑
i=1

T∑
t=1

β1X̃
2
it

⇔ β1 =

∑N
i=1

∑T
t=1 ỸitX̃it∑N

i=1

∑T
t=1 X̃

2
it

Hence, we obtain that β̂1 =
∑N

i=1

∑T
t=1 ỸitX̃it∑N

i=1

∑T
t=1 X̃2

it

.

Moreover, we can estimate β0 which is the average of individual effects by using
β̂0 = Ȳit − β̂1X̄it.

We can also use the entity and time fixed effects regression model. We have
the following formula:

Yit = αi + β1Xit + δt + uit

where i is the notation for entity and t the notation for time, β1 is a parameter,
δt is the coefficient for the time regressors and αi is the fixed effect for the entity
i. We denote the error term with uit. Yit is the outcome variable, Xit is the
variable we are interested in measuring the causal effect on Y .
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The random effects model is used to observe variability and differences be-
tween different entities in a larger group. Note that the term ”random” does not
imply randomness, but rather that we consider that each level is drawn from a
random variable which originates from an underlying distribution.
For the random effects model the factors are not fixed but we group them as ran-
dom variables and obtain different levels of factors. The estimation of random
effects allows us to get information about specific levels, but also population,
absent or unobserved levels. The levels of random effects are considered as rep-
resentative samples from a larger collection of levels.
We have the following formula:

Yin = µ+ αi + ϵin,

where n is the number of observations and i stands for the ith group. We
have that Yin is the response variable and µ the overall mean. Moreover,
αi ∼ N(0, σ2

α) are the random effects for groups and ϵin ∼ N(0, σ2
ϵ ) is the

residual error.
Let us have a look at the advantages of fixed and random effects. On the one
hand, fixed effects are ideal to control time-invariant factors. They are also
used to reduce the confusion of the relation between independent and depen-
dent variables. By using fixed effects in our analysis, we remove the influence
of unobserved factors and therefore we get a more accurate estimation of the
desired effects compared to the random effects model.
Moreover, fixed effects models allow us to analyze entity-specific effects and the
unique impact of different variables on the desired outcome.
However, fixed effects models mainly focus on the within-entity variations and
therefore it is difficult to generalize the estimations to populations outside the
observed entities.
In addition, fixed effects regression models reduce possible bias (no accurate rep-
resentation of the population) compared to the random effects model because
of unmeasured, unchanging variables that may be correlated with the variables
of interest.

On the other hand, we have some advantages of random effects. For exam-
ple random effects allow us to capture unobserved heterogeneity and to explain
variations in the outcome, which can not be explained by observable variables.
Moreover, using random effects, our estimations of parameters get more precise
compared to the estimations with fixed effects. This precision is due to the fact
that random effects are correlated with independent variables.
Another advantage of random effects models is that these models are able to
capture a larger range of variation in the population because the effects vary
across different groups.

However, one main disadvantage of random effects is that we are not able to
estimate and interpret entity-specific effects (i.e. variations and nuances within
individual characteristics) because random effects mainly capture unobserved
heterogeneity.

23



The mixed effects models (MEMs) are defined as a class of models which
are built on linear or generalized linear models. Moreover, MEMs rely on dif-
ferent factors such as dependence, heterogeneity and non-linearity of variables.

Let us first look at the linear mixed effects models, which are extensions of
linear regression models, where the data is collected and summarized in groups.
Moreover, MEMs mix fixed effects and random effects. On the one hand, the
terms of fixed effects are usually the linear regression part and on the other
hand, the random effects correspond to the individual level randomly drawn
from a population. Mixed effects models describe a relation between a response
variable and independent variables (Equation 4).
In addition, the coefficients vary with respect to one or more groups.
Using the mixed effects models, we obtain a covariance structure related to the
fact that we associate the random effects to observations with the same level of
a grouping variable.
We have the following model for linear mixed effects model:

Y = Xβ + Zb+ ϵ, (4)

where Y is the n-by-1 response vector and n the number of observations. More-
over, β is a p-by-1 fixed effect vector and X an n-by-p fixed effect matrix. We
have that b is a q-by-1 random effects vector and Z a n-by-q random effects
matrix. The error term ϵ is the n-by-1 observation error vector.
Note that the random effects vector b and the error term ϵ, which are indepen-
dent, have the following distributions with σ2 the error variance:

• b ∼ N(0, σ2D(θ)), where D is a symmetric and positive semidefinite ma-
trix and parameterized by a variance component vector θ.

• ϵ ∼ N(0, σ2I), where I is an n-by-n identity matrix

We can consider different mixed effects models. Depending on the context these
models are called multilevel models (parameters vary at more than one level)
or hierarchical models (relation between lower level variables and higher, more
general level of factors). Mixed effects models include factors which can be mul-
tilevel, hierarchical or crossed (i.e. every level of one factor occurs in every level
of the other factor).

For the analysis in F1, the article (de Groote, 2021) uses four different cate-
gories of fixed effects: track fixed effects, season fixed effects, race fixed effects
and driver race-specific fixed effects.
We use fixed effects in our analysis because this method allows us to observe the
individual characteristics of the track, season, race and driver and to observe
their specific impact on overtaking.
Let us have a closer look at the different fixed effects used:
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2.4.1 Track fixed effects

Track fixed effects describe the unique characteristics of each circuit that can
influence the outcome of a race. We consider for example the layout of a track,
the elevation, the surface type or the length.
The layout of a track plays an important role in the analysis of overtaking such
as overtaking-friendly tracks, which consist of long straights and long braking
zones (Figure 11).

Figure 11: The first layout shows the circuit of Monaco (reference track), which
is a twisty street circuit and the worst track for overtaking because there is not
enough space to overtake and it is a slowest circuit. The second layout is the
track in Bahrain, which consists of long straights and long breaking zones to
promote overtaking. The two last circuits are Monza and Spa, which are ideal
to overtake because there is enough space on track, drivers have DRS coming
out of a corner and long breaking zones.
Note that each track is divided into three sectors (marked in the pictures with
different colors) with approximately the same length. This division is useful for
the teams to easier compare the performance of the drivers.

Before going into the detail of how the surface of the track influences the tires,
let us first have a look at the different tires used in Formula 1. Since 2011, Pirelli
exclusively supplies F1 teams with tires after some previous involvements in the
1950s, ’80s and ’90s.
The 18-inch tires (marked on the outside in different colors) range six slick com-
pounds (used in dry weather conditions) from hardest to softest, i.e. C1, C2,
C3, C4, C5, C6.
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Soft tires, marked in red, are the fastest tires but are likely to wear out quickly.
Medium tires, marked in yellow, are a compromise between the soft and hard
compound. They last longer than the softs but are slower. Finally, the hard
tires, marked in white, last the longest but provide the least grip.
Moreover, Pirelli also provides intermediates (marked in green) and full wets
(rainy weather, marked in blue) (Figure 12).
At every race weekend, Pirelli picks three compounds to be used, taking into
account track characteristics and weather conditions. Moreover, each team has
13 sets of dry weather tires available for a race weekend and during a race every
driver has to use at least two different slick compounds.

Figure 12: Different tires marked in their respective color

Note that the roughness, composition and even color of the track have an in-
fluence on the grip levels of the cars. Most surfaces of racetracks are made of
asphalt, applied on top of layers of crushed rock and stone. The surface has
a significant impact on durability and tire grip, especially resurfacing a track
reduces the grip.
Another important aspect of track fixed effects is the track evolution with each
lap, which refers to the gradual increase in grip. This is due to the fact that the
tires deposit rubber on the track, which finally improves lap times.
Track temperature also influences the tire grip.
On the one hand, higher track temperature often brings tires into their working
range which increases the grip. However, extremely high track temperatures
cause overheating of tires. This overheating reduces the grip and hence induces
graining and blistering.
On the other hand, low track temperatures make it difficult for the rubber to
deform and therefore generate friction.

To conclude, we can say that we consider track fixed effects to give specific
information about the characteristics of each track. The most important infor-
mation is the overtaking-friendlyness of a track i.e. the layout of a track.
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2.4.2 Season fixed effects

We consider season fixed effects because they describe different factors that are
constant during a season but may change across seasons. These changes are
for example different regulations, other tire compounds, engine performance or
aerodynamic rules.

2.4.3 Race and driver race-specific fixed effects

In the analysis of overtaking from the article (de Groote, 2021), race fixed
effects and driver race-specific fixed effects are composed of different variables.
These variables are usually derived from observed variables and used as auxiliary
variables. Note that we use three indices to describe the variables: i determines
the driver, j the track and t the season. Moreover, the race fixed effects are
uppercase letters and the driver race-specific effects are lowercase letters.
Let us have a look at the auxiliary variables:

• Race distance in number of laps; Njt

• Number of cars running at the end of the first lap; Cjt

• Unscheduled stop in first 5 laps; Sa
ijt

• Unscheduled stop after lap 5; Sz
ijt

Note that the letters a and z for the variables Sa
ijt and S

z
ijt are chosen randomly.

• Position at the end of the first lap; pijt

• Ranking based on fastest lap of the weekend; rijt

• Number of laps completed; nijt

• Lap at which first pit-stop is made; lijt

• Percentage of race distance at which the first pit-stop is made; kijt =
lijt
Njt

• Unknown strategy (u stands for unknown); quijt =

{
1 if

nijt

Njt
< 3

4

0 else

Note that standardization (namely z-score standardization) used for the vari-
ables is a method of transforming variables so that they have a mean of zero
and standard deviation of one. We adjust the data values which allows us to
compare different variables.
For the z-score standardization we have the following formula:

z =
(x− µ)

σ
,

where x is the original data point, µ is the mean of the data and σ is the stan-
dard deviation of the data.
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To do the standardization we subtract the mean of each variable from each data
point and divide it by the standard deviation.
To ensure standardization and consistency in data representation, we use equal
interval in our measurements. Therefore, we can also compare standardization
across different measurement units.
Since standardization eliminates variations caused by differences in measure-
ments, it allows us to compare, analyze and interpret numerical data by trans-
forming the data to a common scale or format. Moreover, using standardized
data enables us to identify outliers and detect trends. Hence it is commonly
used in regression analysis and hypothesis testing.
Another method used for standardization is the min−max scaling, used to scale
the data to range between 0 and 1. To obtain this rescaling, we subtract the
minimum value from data points and divide it by the range Xmax − Xmin.
Hence, we have the following formula:

X ′ =
X −Xmin

Xmax −Xmin
,

where X ′ is the standardized value and X is the original value. Moreover, Xmin

is the minimal value in the dataset and Xmax is the maximum value in the
dataset .

We have three more auxiliary variables:

• Standardized rank [0,1]; ρijt = 1− rijt−1
Cjt−1

The fastest driver of the weekend has a standardized rank ρijt of 1 and
the slowest driver has a standardized rank of 0.

• Standardized position [-1,1]; πijt =
2(pijt−1)
Cjt−1 − 1

The standardized position πijt ranges from -1 to 1 in an ascending order
where the leader has the lowest number.

• Standardized position [0,1]; ψijt = 1− pijt−1
Cjt−1

The leader at the end of the first lap has a standardized position ψijt of 1
and the driver running last at the end of the first lap has a standardized
position of 0.

The standardized rank and position are normalized to a [0, 1] or a [−1, 1] inter-
val by dividing the ranks with the number of cars running at the end of the first
lap.
It is helpful to have the variables with a mean of zero because ψijt is directly
compared to ρijt and πijt interacts with the pit-stop timing.

Race fixed effects

We use race fixed effects to analyze if a car is qualifying pace biased or race
pace biased.
On the one hand, a car is qualifying pace biased if it qualifies in a good position
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but loses a lot of places during the race because of a slow race pace. A qualifying
pace biased car performs well over one single fast lap.
On the other hand, a race paced biased car usually qualifies in a lower position
but gains a lot of positions during the race. Hence, this car is more consistent
and efficient during the race.
This difference of pace can be due to the different tire degradation of the cars
or to a good balance of the car with high fuel.
Let us consider the situation where a driver with a strong qualifying pace car
obtains a grid penalty, he is able to overtake a lot of cars during the race if he
has a strong race pace car. Some reasons to obtain a grid penalty are for exam-
ple impeding another driver during qualifying (3-place grid penalty) or multiple
power unit changes (10-place grid penalty).

Moreover, another factor of race fixed effects are weather conditions such as
the wind. If the wind is blowing from the front, the maximum speed of the car
will decrease because the car needs to overcome a greater momentum of air in
the opposite direction. In addition, the car consumes more fuel and the engine
needs to work harder against the wind resistance.
However, this situation also has advantages: if the car is on the straight line,
the air brakes the car and allows the driver to brake later before the corner and
with less force which reduces the brake wear. Moreover, DRS is more effective
and allows the driver to overtake more easily.
If the wind is blowing from behind, we observe an increase in the maximum
speed of the car in less time, hence the car uses less fuel. However, on the
straight line, the driver needs to break earlier which increases brake wear. In
addition, DRS is less effective because there is not much difference in speed
between the car using DRS to overtake and the car right in front.
If the wind is blowing from the side, the car becomes more unstable especially
in corners. In addition, side wind can be dangerous if there are sudden wind
gusts, because the driver suddenly loses stability and needs to react quickly.

For example the circuit Silverstone in Great Britain, which is located in a place
with few natural obstacles, is known for its sudden and strong wind gusts caus-
ing the drivers to spin, drive through the gravel or even end up in the wall.

For our model the race fixed effects are composed of 6 different variables. Note
that these race fixed effects are usually the sum of auxiliary variables.
1) The number of cars running at the end of the first lap; Cjt.

2) Race-average proportion of laps completed; µjt =
∑

i nijt

Njt
.

3) Race-average distance at which the first pit-stop is made; λjt =
∑

i

(
lijt
Njt

)
|quijt =

0.
4) One or more safety car periods (dummy variable); Sjt.

5) Number of unscheduled stops in the first 5 laps; Ua
jt =

∑
i S

a
ijt.

6) Number of unscheduled stops after lap 5; Uz
jt =

∑
i S

z
ijt.

29



Driver race-specific fixed effects

In our analysis, we also consider driver race fixed effects to take the person-
ality of a driver and his driving style into consideration. For example, Max
Verstappen is known for his aggressive driving style or Nico Rosberg usually
driving more carefully and therefore he was often overtaken.

Most driver race-specific fixed effects are directly observed, except for the pit-
stop and position variables. For our model the driver race-specific fixed effects
are composed of 11 different variables:
1) Proportion of laps completed; vijt =

nijt

Njt
.

2) Number of scheduled pit-stops; qijt.
3) Percentage of drivers pitting more often (m stands for more); qmijt.

4) Percentage of drivers pitting less often (l stands for less); qlijt.

5) Unknown strategy (noted with u); quijt =

{
1 if

nijt

Njt
< 3

4

0 else

6) Pit-stop mixing; χijt = πijt(kijt − λjt).
We obtain positive values if either a back-marker pits late or a front-runner pits
early. Both situations cause mixing of the field and hence it induces overtaking.
However, if χijt is negative (i.e. one of the terms of the product is negative),
then we have less mixing and hence less overtaking is expected. In this case the
variable χijt is split into a positive part χh

ijt and negative part χl
ijt.

7) Low pit-stop mixing (noted with l); χl
ijt =

{
−χijt if χijt < 0
0 if χijt ≥ 0

, where χl
ijt

takes the negative values of the pit-stop mixing χijt and positive numbers are
treated as zero.

8) High pit-stop mixing (noted with h) ; χh
ijt =

{
0 if χijt < 0
χijt if χijt ≥ 0

, where χh
ijt

takes the positive values of the pit-stop mixing χijt and negative numbers are
treated as zero.

9) Position compared to expected position; δijt = ψijt − ρijt.
Moreover, if δijt is positive, it means that a driver is running in a worse position
than where he is expected and if δijt is negative, the driver is running a better
position than where he is expected. In this case, δijt is separated into a positive
part ∆w

ijt and negative part ∆b
ijt.

10) Better (noted with b) than expected position at the end of the first lap;

∆b
ijt =

{
−δijt if δijt < 0
0 if δijt ≥ 0

, where δijt is the position compared to the expected

position.
11) Worse (noted with w) than expected position at the end of the first lap;

∆w
ijt =

{
0 if δijt < 0
δijt if δijt ≥ 0

, where δijt is the position compared to the expected

position.
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2.5 Model

Our analysis on overtaking relies on count data. Therefore, we use the Poisson
regression to model how often each driver passes or gets passed in each race.
Since the total number of places gained and lost matter for the analysis, they
are estimated simultaneously. Moreover, these estimations share some race and
driver race-specific fixed effects (see 2.4 Fixed effects models).
We have the following two formulas to estimate the number of places gained
and lost by a driver:
1) To compute the expected number of places gained (Gijt) by driver i on track
j in season t we use:

log(E(Gijt|xijt)) = Rα+Rgγ +Dβ +Dgη + τj + ϕt

2) To compute the expected number of places lost (Lijt) by driver i on track j
in season t we use:

log(E(Lijt|xijt)) = Rα+Rlδ +Dβ +Dlθ + τj + ϕt

For both formulas, τj is the vector for track fixed effects and ϕt the vector for
season fixed effects. In addition, we consider R to be a vector of race fixed ef-
fects and D to be a vector of driver race-specific fixed effects. Moreover, we add
Rg as vector of race fixed effects and Dg as vector of driver race-specific fixed
effects where g stands for the number of places gained by a driver i in track j
in season t. Similarly, Rl is a vector of race fixed effects and Dl is a vector of
driver race-specific fixed effects where l stands for the number of places lost by
a driver i in track j in season t.
Moreover, α and β are estimated vectors, which are the same in both equations.
Note that the vectors γ and η are only estimated for positions gained and the
vectors δ and θ are only estimated for positions lost.

To interpret the results obtained during the calculations of the number of places
gained and lost by every driver we use the incidence-rate ratio of the baseline
model.
Let us have a look at the term of incidence rate. The incidence rate is not only
used in Formula 1 but also in other domains. It refers to the rate at which a new
event occurs over a specified period of time. Hence it refers to the frequency at
which new events occur. This method is often used to describe the frequency of
a disease or accidents but also financial phenomena.
Moreover, the incidence rate allows experts to predict future incidents and pre-
pare appropriate plans because the incidence rate only uses new cases instead
of previously detected ones. In order to determine the incidence rate of a par-
ticular event, experts consider the number of new cases as a proportion of the
population at risk.
If two rates of an incidence are computed during the same time period we can
determine the incidence-rate ratio, which refers to the ratio of two different rates.
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If we obtain an incidence-rate ratio of 1, we can conclude that there is no
difference between the exposed and unexposed group. On the one hand, an
incidence-rate ratio greater than 1 indicates a positive association, i.e. in the
case of a disease the incident rate in the exposed group is higher than in the
unexposed group. On the other hand, an incidence-rate ratio less than 1 indi-
cates a negative association, i.e. in the case of a disease the incident rate in the
exposed group is lower than in the unexposed group.
In Formula 1, we use the incidence-rate ratio to compare the rate of certain
events such as overtaking between two groups. For example one group using
soft tires and the other hard tires, or one group doing more pit-stops than the
other group.

For the analysis in Formula 1, we can use the incidence-rate ratio as follows:
The incidence-rate ratios are the exponents of the regression coefficients and
they indicate the ratio at which the number of overtakes is affected by a unit
increase of a control variable.
If the incidence-rate ratio is equal to 1, we don’t observe an increase or decrease
of the number of overtakes. Moreover, if the incidence-rate ratio is greater than
1, we observe an increase of the number of overtakes and the incidence-rate ratio
less than 1 indicates a decrease in overtakes.
For dummy variables the incidence-rate ratio indicates the rate at which over-
taking increases if the dummy variable goes up from 0 to 1.
Moreover, some continuous variables are log-transformed, hence the estimated
coefficients can be interpreted as elasticities.
We use elasticities to measure the responsiveness of the dependent variable to
changes in the independent variables. While using a linear regression model, we
obtain coefficients which indicate the expected change in the dependent variable
for a one-unit change in the independent variable.
Hence a positive coefficient means that as the independent variable increases,
so does the dependent variable. However, if the coefficient is negative, we have
that the independent variable increases and the dependent variable decreases.

Let us consider the formula of the linear regression model: Y = β0 + β1X + ϵ,
where Y is the dependent variable and X the independent variable. Moreover,
β0 is the intercept of the true regression line, β1 is the slope of the true regres-
sion line and ϵ is the error term.
Hence, we can derive the elasticity from a regression analysis and we obtain the
following formula:

E =
dY
dX ·X
Y

,

where Y is the dependent variable, X the independent variable and dY
dX = β1 is

the estimated coefficient from the regression.
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2.6 Baseline results from the article (de Groote, 2021)

Let us look at the incidence-rate ratios of figure 13:
For the computation in the first column (1) we use track and season fixed effects.
Moreover, we also consider the number of cars, reliability, number of pit-stops
made by a driver, the strategic variation and the amount of mixing at the end
of the first lap.
In the second column (2) we add the information about the timing of the first
pit-stop and unscheduled stops. Moreover, in the third column (3) we also take
the mixing due to pit-stops into account. We observe in the three columns a
significant reduction in overtaking in 2014, 2015, 2017 and 2018 compared to
the reference year 2011.
Moreover, we can observe that for the three columns we have a slight decline in
overtaking from 2011 to 2014, but a significant drop in 2015 and from there on
less overtaking.
These reductions in overtaking could be explained by some season rule changes
such as the introduction of turbo engines, fuel and fuel-flow limit and the reduc-
tion of the height of the nose of the car in 2014. Moreover, we also reduced the
height of the nose even more in 2015. In 2017, the Formula 1 cars became wider
and the fuel limit increased to 105kg. In addition, in 2018 Formula 1 introduced
triple DRS zones and the HALO system.

Figure 13: (figure from the article (de Groote, 2021)) Number of overtakes per
car (incidence-rate ratios). Note that the Asterisks depict significance levels:
∗10% significance level, ∗∗5% significance level, ∗∗∗1% significance level

Note that the values in brackets in figure 13 refer to the standard error. Stan-
dard error (SE) is usually used to refer to the standard error of the mean, which
estimates how much the sample mean deviates from the actual mean of a popu-
lation. We use the following formula to compute the standard error: SE = σ√

n
,

where σ is the empirical standard deviation and n the sample size.
Standard deviation is used to determine the accuracy of a sample, because a
large value of SE indicates more uncertainty and a relatively small SE value
compared to the estimates such as 0, 053 indicates a more precise estimate.

Since all the values of the standard error in figure 13 are relatively small com-
pared to the estimates, we can conclude that there is a decreasing of the number
of overtakes from 2011 to 2018.
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Let us have a closer look at the influence on overtaking of different factors
in figure 14.
In the first column (1), we can clearly see that overtaking increases with the
percentage of laps completed. This increase in overtaking can be explained by
the fact that the more laps are completed, the more pit-stops are happening
and mixing the order of the cars. Moreover, at the end of the race the tires are
degrading (i.e. losing grip), which allows drivers on fresher tires to overtake.

Note that we can also observe this clear increase in overtaking in the column
(2) and (3). Computing the percentage of laps completed for column (2), we
obtain: log(2, 462) ≈ 0.89. This means that if we consider a 10% increase in
completed laps, we obtain approximately 9% more overtakes. Hence, we see
that if a driver completes more laps, the number of overtakes increases.

Now consider column (2) where we introduced the timing of the pit-stops. We
observe that earlier pit-stops increase the number of overtakes (see 2.3, pit-
stop explanation). This trend is also observed in column (3). Moreover, we
observe that the number of unscheduled pit-stops increases the probability of
being overtaken. This increase can be explained by looking at the reasons of
an unscheduled pit-stop. An unscheduled pit-stop often happens when a car
has mechanical problems such as changing damaged front wing. This causes a
longer pit-stop and therefore the other drivers on track are gaining time on the
driver in the pits.

Note that in the analysis on the probability of overtaking the unscheduled pit-
stop dummy interacts with the driver’s rank based on his expected race pace.
Hence if a driver with a high race pace pits late, he is more likely to overtake
other drivers because of the advantage of fresher and faster tires.
Not only the timing of the pit-stops plays an important role in the analysis but
also the number of pit-stops.

Let us have a look at column (3) where we include mixing due to pit-stops.
Looking at the timing of stops, we see that the incidence-rate ratios for overtak-
ing and being overtaken in case of high mixing is higher than the incidence-rate
ratios for overtaking and being overtaken in case of low mixing. This observation
can be explained due to the fact that the timing of a pit-stop influences mixing.
Especially, if front-runners pit earlier than backmarkers and the pit-stops are
early in the race. At that moment the field is still close and this results in more
mixing and hence more overtaking.

Let us have a look at the probability of being overtaken and overtaking. Since
the incidence-rate ratio of the percentage of pitting more often is greater than 1
for the probability of overtaking and smaller than 1 for the probability of being
overtaken, we can conclude that the more a driver is pitting, the more he will
overtake others because of the advantage of new, fresh tires and he will be less
often overtaken.
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Hence a driver who pits less often, will overtake less cars but will be over-
taken by the others.

Figure 14: (figure from the article (de Groote, 2021)) Number of overtakes per
car (incidence-rate ratios). Note that we need to swap the values of the per-
centage pitting more often respectively less often on the probability of being
overtaken with the values of the percentage pitting more often respectively
less often on the probability of overtaking.
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Let us analyze in a more detailed way the incidence-rate ratio in relation with
the track fixed effects. As already mentioned, we consider Monaco as reference
track because it is the worst track for overtaking.
Considering figure 15, the table starts with the circuits where overtaking is dif-
ficult such as Singapore and Albert Park. These two are street circuits, hence
twisty tracks and not enough space to overtake. At the lower part of the ta-
ble, we find the circuits with the highest overtaking rate such as Shanghai or
Sakhir. These tracks are the most overtake-friendly because they consist of long
straights and long braking zones.
However, we have some circuits (Yeongam, Sochi and Buddh), which also consist
of long straights and long braking zones, hence they should be overtake-friendly,
but they are at the beginning of the table and overtaking is relatively difficult.
Let us have a closer look at the circuit of Buddh which was designed to be the
most challenging for drivers. It consists of 16 turns and has some noticeable
changes in elevation. It rises fourteen meters within the first three corners.
Moreover, it has a long pitlane (more than 600 meters) which increases the du-
ration of a pit-stop. Hence the driver looses a lot of time while pitting. All
these factors increase the difficulty for the drivers to overtake. This shows that
the layout of a track influences the number of overtakes.

Figure 15: (figure from the article (de Groote, 2021)) incidence-rate ratio of
overtaking considering different circuits.

36



2.7 Conclusion

In the first part of this thesis, we started explaining the statistical method of
regression, used to analyze the relation between independent and dependent
variables. We mainly used the Simple Linear Regression Model in our analysis,
by considering the following formula: Y = β0 + β1X + ϵ, where Y is the depen-
dent variable and X the independent variable. In addition, ϵ is the error term
and β0 and β1 are parameters. We estimated these two parameters using two
different methods: least square estimation and maximum likelihood estimation
and obtained the same result.
Moreover, we studied in more detail Poisson regression assuming that the de-
pendent variable follows a Poisson distribution. Poisson regression, which uses
count data, predicts the number of events occurring within a given interval of
time or space. Using linear regression and Poisson regression, we explained the
Log Likelihood, which is used to describe the process of determining the specific
data distribution given a certain data set.

In the second part of this thesis, we introduced Formula 1, explaining the dif-
ferent regulations and rules before starting the theoretical framework of the
analysis.
Our main goal is to understand which factors are able to impact the number
of overtakes in Formula 1. Therefore, we mainly considered the effectiveness of
DRS, reliability of the car, field size, pit-stops, cars out of position and safety
car as main factors in our analysis. Moreover, we introduced the fixed effects
model to better control our variables and we considered four categories of fixed
effects namely track-, season-, race- and driver specific fixed effects.
After our study of the baseline results from the article (de Groote, 2021), we can
conclude that we observe a clear decrease in the number of overtakes from 2011
to 2018. However, it is difficult to pinpoint the specific reason causing this de-
crease because the number of overtakes is influenced by many different factors.
These factors cannot always be controlled, for example the timing of the first
pit-stop. If a driver has front wing damage, he is forced to do an unscheduled
pit-stop, which in revenge causes more mixing during the race and can increase
the number of overtakes.
Moreover, we discovered that the layout of a track does not guarantee more
overtaking, even if the track has long straights and long braking zones.

Finally, we can conclude that overtaking is one of the main reasons making
Formula 1 exciting. Even if it is difficult to influence all factors to increase the
number of overtakes, it is clear that the number of overtakes is influenced by
the number of pit-stops. One solution to increase the number of overtakes is
to increase the number of mandatory pit-stops, which will be the case at the
Monaco (worst track to overtake) Grand Prix 2025. FIA confirmed that a two-
stop strategy with two different tire compounds is mandatory for the Monaco
race.
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3 Simulation of data

In this section, we will generate data of a Formula 1 season using synthetic data
and try to estimate the parameters. Let us first explain synthetic data.

3.1 Synthetic data

Synthetic data are data that are artificially simulated and not generated by real
world events. The process to generate real world data is difficult, expensive
and time-consuming. Therefore, we use the technology of synthetic data, which
allows us to easily, quickly and digitally generate data in the desired amount.
We also generate synthetic data to meet certain conditions that may not be
found in the real data.

To simulate the data we use different algorithms and systems which depend
on data to function. Moreover, synthetic data are often used in test data sets
to validate mathematical models and train machine learning. Since synthetic
data mimics real data sets, it allows companies to generate a lot of training data
without spending a lot of time and money.

Depending on the tools and algorithms we use, we can distinguish three dif-
ferent techniques to create synthetic data.
First, we can simulate data using a specific distribution, in our case it will be the
Poisson distribution to simulate the data of a Formula 1 season. This method
allows us to produce a data distribution that resembles real world data.
Another technique to simulate data is agent-based modeling, which examines
how different agents such as people, mobile phones or computer programs com-
municate or interact with one another.
A third method is generative models i.e. algorithms which generate synthetic
data that replicates statistical properties of the real world. Using the train-
ing data, these models learn the statistical patterns and use this knowledge to
generate new data similar to the original one.

3.2 Python Code: F1 2024 Season Simulation

In the following we will generate synthetic data following the Poisson distribu-
tion. We generate data of the 2024 Formula 1 season. Therefore, we start by
defining the 20 drivers, the 10 different teams with their corresponding car per-
formance and the race calendar. For the car performance, we use the ranking
from 1 to 3 i.e. least reliable car to best reliable car. Moreover, we also rank the
drivers depending on their driving skills and character. We do 100 simulations
of the season to get more realistic results.
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3.2.1 Python code for the simulation of data

1 import pandas as pd

2 import numpy as np

3

4 # Set driver/team info

5 drivers_teams = {

6 'Max Verstappen ': 'Red Bull Racing ',
7 'Sergio Perez ': 'Red Bull Racing ',
8 'Lewis Hamilton ': 'Mercedes ',
9 'George Russell ': 'Mercedes ',

10 'Charles Leclerc ': 'Ferrari ',
11 'Carlos Sainz ': 'Ferrari ',
12 'Lando Norris ': 'McLaren ',
13 'Oscar Piastri ': 'McLaren ',
14 'Fernando Alonso ': 'Aston Martin ',
15 'Lance Stroll ': 'Aston Martin ',
16 'Pierre Gasly ': 'Alpine ',
17 'Esteban Ocon': 'Alpine ',
18 'Yuki Tsunoda ': 'RB',
19 'Daniel Ricciardo ': 'RB',
20 'Kevin Magnussen ': 'Haas',
21 'Nico Hulkenberg ': 'Haas',
22 'Zhou Guanyu ': 'Sauber ',
23 'Valtteri Bottas ': 'Sauber ',
24 'Alex Albon ': 'Williams ',
25 'Logan Sargeant ': 'Williams '
26 }

27

28 team_performance = {

29 'Red Bull Racing ': 3,

30 'Mercedes ': 3,

31 'Ferrari ': 3,

32 'McLaren ': 2,

33 'Aston Martin ': 2,

34 'Alpine ': 2,

35 'RB': 1,

36 'Haas': 1,

37 'Sauber ': 1,

38 'Williams ': 1

39 }

40

41 # 2024 race calendar

42 race_calendar = [

43 ('Bahrain ', 57, 'circuit '),
44 ('Saudi Arabia ', 50, 'street '),
45 ('Australia ', 58, 'street '),
46 ('Japan ', 53, 'circuit '),
47 ('China ', 56, 'circuit '),
48 ('Miami ', 57, 'street '),
49 ('Emilia -Romagna ', 63, 'circuit '),
50 ('Monaco ', 78, 'street '),
51 ('Canada ', 70, 'street '),
52 ('Spain ', 66, 'circuit '),
53 ('Austria ', 71, 'circuit '),
54 ('Great Britain ', 52, 'circuit '),
55 ('Hungary ', 70, 'circuit '),
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56 ('Belgium ', 44, 'circuit '),
57 ('Netherlands ', 72, 'circuit '),
58 ('Italy ', 53, 'circuit '),
59 ('Azerbaijan ', 51, 'street '),
60 ('Singapore ', 62, 'street '),
61 ('USA', 56, 'circuit '),
62 ('Mexico ', 71, 'circuit '),
63 ('Brazil ', 71, 'circuit '),
64 ('Las Vegas ', 50, 'street '),
65 ('Qatar ', 57, 'circuit '),
66 ('Abu Dhabi ', 58, 'street ')
67 ]

68

69 # Driver talent scores (scale: 1 = low , 3 = elite)

70 driver_talent = {

71 'Max Verstappen ': 3,

72 'Sergio Perez ': 2,

73 'Lewis Hamilton ': 3,

74 'George Russell ': 2,

75 'Charles Leclerc ': 3,

76 'Carlos Sainz ': 2,

77 'Lando Norris ': 3,

78 'Oscar Piastri ': 2,

79 'Fernando Alonso ': 3,

80 'Lance Stroll ': 1,

81 'Pierre Gasly ': 2,

82 'Esteban Ocon': 2,

83 'Yuki Tsunoda ': 2,

84 'Daniel Ricciardo ': 2,

85 'Kevin Magnussen ': 1,

86 'Nico Hulkenberg ': 2,

87 'Zhou Guanyu ': 1,

88 'Valtteri Bottas ': 2,

89 'Alex Albon ': 2,

90 'Logan Sargeant ': 1

91 }

92

93

94 def simulate_season(sim_id):

95 all_races_data = []

96 drivers = list(drivers_teams.keys())

97 teams = [drivers_teams[d] for d in drivers]

98 car_perf = [team_performance[t] for t in teams]

99 n = len(drivers)

100

101 for race_name , laps , layout in race_calendar:

102 # Layout -based probabilities

103 safety_car_prob = 0.5 if layout == 'street ' else 0.3

104 dnf_prob = 0.15 if layout == 'street ' else 0.08 # Higher

DNF probability on street circuits

105

106 # Race -level randomness

107 safety_car = np.random.choice ([0, 1], p=[1 -

safety_car_prob , safety_car_prob ])

108 penalised = np.random.binomial(1, 0.1, n)

109 penalty_drop = penalised * np.random.choice ([1,2,3,5],size=

n,p=[0.4 ,0.3 ,0.2 ,0.1])
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110 # Compute qualifying performance score

111 talents = [driver_talent[d] for d in drivers]

112

113 qualifying_score = (np.array(talents)+ np.array(car_perf)+

np.random.normal(0, 0.15, n)) # small noise for variability

114

115 # Weighted components for realistic qualifying variation

116 talents = np.array([ driver_talent[d] for d in drivers ])

117 car_perf_array = np.array(car_perf)

118

119 # Lower score = better position , so we rank in reverse

120 base_start = pd.Series(-qualifying_score).rank(method='
first ').astype(int).values

121

122 # Adjust with penalty

123 adjusted_raw = base_start + penalty_drop

124 # Assign unique adjusted starting positions (lower

adjusted_raw = better position)

125 adjusted_start = pd.Series(adjusted_raw).rank(method='first
').astype(int).values

126

127 # Pit stops

128 unsched_before_5 = np.random.poisson (0.1, n)

129 unsched_after_5 = np.random.poisson (0.3, n)

130 total_pitstops = np.clip(unsched_before_5 + unsched_after_5

+ np.random.poisson(1, n), 1, 5)

131

132 # Determine DNFs

133 # Base DNF probability + higher for lower performance cars

+ randomness

134 dnf_probs = np.clip(

135 dnf_prob

136 + (3 - np.array(car_perf)) * 0.02 # Lower performance

cars more likely to DNF

137 ,0, 0.25 # Keep probabilities between 0% and 25%

138 )

139 dnf = np.random.binomial(1, dnf_probs)

140

141 # Overtaking & being overtaken (only for drivers who finish

)

142 aggression = np.random.normal(0, 0.005, n)

143 aggression = aggression -np.mean(aggression)

144

145 # Encode track layout effect consistently

146 is_street = 1 if layout == 'street ' else 0

147 layout_effect = -0.2 * is_street

148

149

150 lin_pred = (

151 0.5 + 0.02 * (laps -60) #laps vary widely from 44 to 78 ->

rough average

152 + 0.25 * (np.array(car_perf) - 2)

153 # + 0.1 * (np.array(car_perf) == 3) # Small boost for top -

tier cars

154 # + 0.07 * (np.array(car_perf) == 2) # small boost for mid

-tier

155 + layout_effect
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156 - 0.15 * unsched_before_5

157 + 0.1 * unsched_after_5

158 + 0.1 * np.log1p(total_pitstops)

159 + 0.5 * safety_car

160 + aggression

161 )

162

163 rate=np.exp(lin_pred)

164 overtakes = np.random.poisson(rate) * (1 - dnf) # DNF

drivers can't overtake

165

166 lam_overtaken = (

167 2.5 - 0.3 * np.sqrt(overtakes)

168 + (0.3 if layout == 'street ' else -0.2)

169 #+ np.random.normal(0, 0.5, n)

170 )

171 lam_overtaken = np.clip(lam_overtaken , 0.1, None)

172 times_overtaken = np.random.poisson(lam_overtaken) * (1 -

dnf) # DNF drivers can't be overtaken

173

174 # Result

175 position_change = -overtakes + times_overtaken

176 adjusted_finish = np.clip(adjusted_start + position_change.

round().astype(int), 1, 20)

177

178 # Set DNF drivers to position 100 (or any high number to

indicate they didn't finish)

179 adjusted_finish = np.where(dnf == 1, 100, adjusted_finish)

180

181 # Rank the finishing positions (DNFs will be at the end)

182 adjusted_finish = pd.Series(adjusted_finish).rank(method='
first ').astype(int).values

183

184 race_df = pd.DataFrame ({

185 'simulation_id ': sim_id ,

186 'race': f'2024-{ race_name}',
187 'driver ': drivers ,

188 'team': teams ,

189 'car_performance ': car_perf ,

190 'penalised ': penalised ,

191 'penalty_grid_drop ': penalty_drop ,

192 'starting_position ': base_start ,

193 'adjusted_starting_position ': adjusted_start ,

194 'finishing_position ': adjusted_finish ,

195 'dnf': dnf ,

196 'overtakes ': overtakes ,

197 'times_overtaken ': times_overtaken ,

198 'unsched_pitstops_before_5 ': unsched_before_5 ,

199 'unsched_pitstops_after_5 ': unsched_after_5 ,

200 'total_pitstops ': total_pitstops ,

201 'safety_car ': safety_car ,

202 'race_distance ': laps ,

203 'track_layout ': layout_effect ,

204 'street_circuit ':is_street ,
205 'aggression ': aggression

206 })

207
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208 all_races_data.append(race_df)

209

210 return pd.concat(all_races_data , ignore_index=True)

211

212 # Run multiple simulations

213 simulations = 100 # Change this to 1000+ for more realistic

results

214 all_simulations = pd.concat ([ simulate_season(sim_id) for sim_id in

range(1, simulations + 1)], ignore_index=True)

215

216 # Save to CSV

217 all_simulations.to_csv("f1_2024_full_season_sim10_with_dnf.csv",

index=False)

218 print(" Monte Carlo season saved as '
f1_2024_full_season_sim10_with_dnf.csv'")

3.2.2 Analysis of the Python code

Let us have a look at our ”lin pred” (i.e. linear combination of the predictors)
expression in the Python code. This expression defines the expected number of
overtakes for each driver in a race, modeled as a Poisson rate with parameter λ
influenced by different factors:

1. race distance in number of laps

2. car performance (reliability of the car)

3. track layout

4. unscheduled pit-stop before lap 5

5. unscheduled pit-stop after 5 laps

6. total number of pit-stops

7. safety car dummy

8. aggression of the driver i.e. driver specific fixed effects

Each one of these parameters influences the predicted number of overtakes for
each driver. Note that the track layout has an important influence not only on
the overtake chances but also on the pit-stop strategy and the probability of
having a safety car.
If we consider a street circuit then the overtaking chances are lower than for
a not street circuit. Moreover, pit-stop strategies are often riskier for street
circuits because of tight pit entries and exits. Therefore, we have less pit-stops
for street circuits than for not street circuits.
In addition, the probability of a safety car is ≈ 50% higher for a street circuit
than for a ”normal” circuit.
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We use the following regression expression for the ”lin pred” (Figure 16):

lin pred = 0.5 + 0.02 · (laps− 60) + 0.25 · (car performance− 2) + layout effect

− 0.15 · (unscheduled pit-stop before lap 5) + 0.1 · (unscheduled pit-stop after 5 laps)

+ 0.1 · log(total number of pit-stops) + 0.5 · safety car + aggression

Figure 16: Interpretation of components used in ”lin pred” expression

Note that we define the rate as exp(lin pred) to ensure that the predicted mean
is positive and matches the Poisson logic.
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Finally, we can generate the number of overtakes using the following expression:
overtakes = np.random.poisson(rate) · (1−dnf), where we consider that dnf (i.e
did not finish) drivers cannot overtake anymore.
This expression simulates actual overtakes from the expected count.

3.3 Ranking of the drivers based on our simulation

Before doing the estimation of the parameters used in our simulation of syn-
thetic data, we want to rank the twenty drivers across a Formula 1 season with
100 simulations.

We start by computing the average position of a driver during a specific race
for 100 repetitions. Hence, we obtain the driver’s average rank of a race. In
addition, we rank the drivers from 1 to 20 i.e. best average position to worst
average position.

Moreover, since we know how many points are distributed to each driver ac-
cording to his position, we can compute the average amount of points each
driver received for each race.

3.3.1 Python code used for the ranking

1 import pandas as pd

2

3 # Load the simulation results

4 all_simulations = pd.read_csv("f1_2024_full_season_sim10_with_dnf.

csv")

5

6 # Calculate mean finishing position per driver per race

7 mean_positions = (

8 all_simulations

9 .groupby (['race', 'driver '])['finishing_position ']
10 .mean()

11 .reset_index ()

12 .rename(columns ={'finishing_position ': 'mean_finishing_position
'})

13 )

14

15 # Rank drivers per race

16 mean_positions['race_rank '] = (

17 mean_positions

18 .groupby('race')['mean_finishing_position ']
19 .rank(method='min')
20 )

21

22 mean_positions.sort_values(by=['race', 'race_rank '], inplace=True)

23

24 # Save to CSV

25 mean_positions.to_csv("f1_2024_mean_positions_and_rankings.csv",

index=False)

26 print(" Mean positions and rankings saved as '
f1_2024_mean_positions_and_rankings.csv'")
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3.3.2 Python code used for the points distribution

1 import pandas as pd

2

3 # Load full simulation results (one row per driver per race per

simulation)

4 all_simulations = pd.read_csv("f1_2024_full_season_sim10_with_dnf.

csv")

5

6 # F1 points system for top 10

7 points_table = {

8 1: 25,

9 2: 18,

10 3: 15,

11 4: 12,

12 5: 10,

13 6: 8,

14 7: 6,

15 8: 4,

16 9: 2,

17 10: 1

18 }

19

20 # Assign race points per simulation (based on actual finishing

position)

21 all_simulations['points '] = all_simulations['finishing_position '].
map(points_table).fillna (0).astype(int)

22

23 # Average points per driver per race (across simulations)

24 avg_points_per_race = (

25 all_simulations

26 .groupby (['race', 'driver '])['points ']
27 .mean()

28 .reset_index ()

29 .rename(columns ={'points ': 'average_points '})
30 )

31

32 # Round for readability

33 avg_points_per_race['average_points '] = avg_points_per_race['
average_points '].round (2)

34

35 # Sort for clarity

36 avg_points_per_race = avg_points_per_race.sort_values(by=['race', '
average_points '], ascending =[True , False ])

37

38 # Save the result

39 avg_points_per_race.to_csv("

f1_2024_average_points_per_driver_per_race.csv", index=False)

40 print(" Average points per race per driver saved as '
f1_2024_average_points_per_driver_per_race.csv'")
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3.3.3 Results

In the following, let us have a look at the ranking and point distribution of the
Abu Dhabi race. Using our two Python codes for the ranking and the points
distribution, we obtain similar tables for each race of the 2024 Formula 1 season.
Looking at figure 17, we can conclude that the lower the mean finishing position
of a driver across all simulations is the better is his rank. For example, on the
one hand Max Verstappen has a mean finishing position of 4.75, therefore he
is rank 1 for the Abu Dhabi race and he scores an average of 16.14 points. On
the other hand, Zhou Guanyu, who is rank 19 in the Abu Dhabi race, has an
average finishing position of 16.58 and scores 0 points on average.

We observe that the Formula 1 point system only rewards the top 10 drivers i.e.
the drivers who are consistently in the top 10. The average amount of points
drops drastically for the drivers outside the top 10.

Figure 17: The first table shows the average finishing position i.e. rank of a
driver for the Abu Dhabi race. The second table shows the average amount of
points each driver obtained for the Abu Dhabi race.
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3.4 Estimation of the different parameters

3.4.1 Python code used for the estimation of the parameters

In the following, we use the generated data in section 3.2 to estimate the pa-
rameters from the regression expression.

1 import pandas as pd

2 import statsmodels.api as sm

3 import statsmodels.formula.api as smf

4 import numpy as np

5

6 # Load simulated data

7 df = pd.read_csv("f1_2024_full_season_sim10_with_dnf.csv")

8 df["log_total_pitstops"]=np.log1p(df["total_pitstops"])

9 # Define the regression formula (treat track_layout as categorical

without dummies)

10 df["race_distance"]=df["race_distance"]-60

11 df["car_performance"]=df["car_performance"]-2

12

13 formula = (

14 'overtakes ~ car_performance + race_distance + '
15 ' + aggression '
16 '+unsched_pitstops_before_5+unsched_pitstops_after_5 +

log_total_pitstops + safety_car + '
17 'street_circuit '
18 )

19

20 # Store results across simulations

21 coefficients = []

22 standard_errors = []

23

24 for sim_id , season in df.groupby("simulation_id"):

25 # Fit a Poisson GLM (for count data: overtakes)

26 model = smf.glm(

27 formula=formula ,

28 data=season ,

29 family=sm.families.Poisson () # Overtakes are count data

30 ).fit()

31

32 coefficients.append(model.params)

33 standard_errors.append(model.bse)

34

35 # Aggregate results across simulations

36 coef_df = pd.DataFrame(coefficients)

37 stderr_df = pd.DataFrame(standard_errors)

38

39 summary_df = pd.DataFrame ({

40 "variable": coef_df.columns ,

41 "avg_coef": coef_df.mean(),

42 "avg_std_err": stderr_df.mean()})

43

44 # Save to CSV

45 summary_df.to_csv("poisson_avg_parameters10.csv", index=False)

46 print(" Regression results saved to 'poisson_avg_parameters10.
csv'")
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Let us consider the following log-linear model expression, i.e. the log of the
expected number of overtakes per driver i per race:

log(λi) = β0 + β1 · (lapsi − 60)

+ β2 · (car performancei − 2)

+ β3 · unsched pitstops before lap 5i

+ β4 · unsched pitstops after 5 lapsi

+ β5 · total pitstopsi
+ β6 · safety cari

+ β7 · track layout streeti

+ β8 · aggressioni

where β0 is the intercept, which is the baseline log-rate and βj for j ∈ {1, ..., 8}
is the estimated coefficient for the corresponding value of the predictors.

3.4.2 Representation of the estimated parameters

We use the Python code to estimate the parameters following the Poisson dis-
tribution and we compute the average of the parameters. Hence we obtain the
following table (Figure 18) with average of the coefficients and average standard
error:

Figure 18: Average of estimated parameters (i.e. coefficients) and average stan-
dard error
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To better compare the true parameters obtained during the simulations and
the estimated parameters, we represent them in a histogram (Figure 19).

Figure 19: Comparison between true and estimated parameters

3.4.3 Explanation and conclusion about the simulation of data and
estimation of the parameters

In figure 19 the blue bars represent the true parameters we used in our sim-
ulation and the orange bars represent the estimated parameters from Poisson
regression on the synthetic data.
The closer the orange bars i.e. estimated parameters are to the blue bars i.e.
simulated parameters, the better is our regression model.
Looking at the true parameters and the estimations we can conclude the follow-
ing:

• Intercept: We observe a slight underestimation which can be explained
due to the fact that the intercept depends on how the other variables are
centered.

• Car performance: We observe that both values are close hence our model
detects correctly that the more a car is reliable, the more it can overtake.

• Race distance (i.e. laps): We observe that both values are identical, which
indicates that our model detects that the more laps are completed the
more we observe overtaking.
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• Unscheduled pit-stop before lap 5: We observe the same value for the true
and estimated parameter, therefore we can deduce that our regression
model recovers that early unscheduled pit-stops often due to mechanical
issue reduce the number of overtaking.

• Unscheduled pit-stop after 5 laps: We observe the same value for the
simulated and estimated parameter, hence our model detects that more
late pit-stops increase the number of overtakes.

• Log of the total number of pit-stops: We have a small underestimation,
but our model still detects that more pit-stops increase the number of
overtaking.

• Safety car: We observe that both values of the parameters are identical,
hence we can conclude that safety car causes the field to get closer together
and therefore provokes more overtaking.

• Street circuit: We observe an overestimation of this parameter i.e. street
circuits don’t reduce the number of overtaking as much as our model
claims.

• Aggression: We observe a large underestimation, it is difficult for our
regression model to detect the effect of aggression.

To conclude, we can summarize that in the first part of section 3, we gener-
ated Formula 1 data based on the car performance, race distance, pit-stops
(unscheduled and total number of pit-stops), safety car, track layout, and ag-
gression. Moreover, we used randomized inputs such as penalties and dnf (i.e.
did not finish) which allows the model to be more realistic. Using our regression
model, we can control the effect of each variable to simulate the total number
of overtakes.

Next we estimated the parameters of our regression model and we observed
that most values of our parameters are close to the simulated value.
Hence, we can conclude that we were able to simulate and estimate the number
of overtakes of a Formula 1 season, where the number of overtakes follows a
Poisson distribution.
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