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Abstract

The following work looks to showcase the importance of statistics in today’s
world of sports, in particular in basketball, and how they can help settle certain
ongoing discussion topics. Based on the deep analysis that will be presented, the
reader will have a better understanding of the great variety of data that can be
collected at competitive events and how analytical tools can help shed light on the
most specific of details.
I would like to personally thank Prof. Christophe Ley for all of his help and guidance
throughout my bachelor’s thesis.
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1 Introduction

Being one of the oldest ball sports on the planet, basketball has continuously grown in
popularity over the last century. Nowadays, it is watched and enjoyed by millions of
people worldwide on a daily basis. Meanwhile, the game itself and the way it is played
has evolved over time, sometimes making it difficult to compare the new era of basketball
to how it was decades ago. This has lead to the arising of heated debates regarding criti-
cal topics such as who is the best of all-time or which players are underrated/overrated.
Often fuelled by subjective biases and opinions, it can be hard to come to any agreement
without conclusive evidence.

The emergence of descriptive statistics and analytical methods can help settle these dis-
cussions. Thanks to the constant evolution of technology, most basketball leagues are
now able to provide a solid collection of statistics related to players and teams. Naturally,
this has opened the door for a deeper analysis of this data, pushing teams to strengthen
their knowledge in the field of basketball analytics, in order to gain an advantage over the
opponent. While certain information is kept private for the teams, the vast majority of
the collected data is shared with the public. This has allowed more and more analysts and
fans to form their own opinions based on stats, especially when making their assessments
of players’ performances.

The aim of this work is to compare former and current players and teams of the NBA
(National Basketball Association) at an analytical level, while underlining certain key
differences between the so-called ”old school” generation and the modern era. This thesis
will provide insights into the game of basketball that go beyond traditional metrics such
as points, rebounds and assists, while trying to settle debates in a more objective and
evidence-based manner. The target audience of this research is not only basketball fa-
natics, but also anyone who admires the growing power and importance that science can
have in sports.

There are several reasons why this research paper is primarily based on the statistics
gathered in the NBA, the highest male basketball league in the United States (and ar-
guably in the world). First of all, being one of the oldest basketball leagues worldwide,
the NBA has a larger historical database to work with. Next, the NBA has been able
to introduce extremely advanced and reliable technology regarding the tracking and col-
lection of data, making it easier than ever to look up any precise stat almost instantly.
Finally, the NBA has hosted some of the all-time greatest basketball players and teams
over the years, which makes it increasingly interesting to conduct this study at the highest
basketball level possible.

To help understand the data that will be used throughout this bachelor’s thesis, we will
first take a brief look at some of the key basic statistics and how they can be analysed and
manipulated using the advanced methods offered by the R package BasketballAnalyzeR.
After having laid the foundations, I will start off by comparing some of the greatest bas-
ketball players of all-time based on their statistical performances alone. By taking a step
back, I will then weigh off some of the best single season teams to have played in the NBA.
The following section focuses on identifying the main eras in NBA history, highlighting
some key analytical differences between the game as we know it today and how it was
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played many years ago. Finally, the last section analyses which statistical factors play a
crucial role in determining a player’s salary. I will also briefly touch upon several other
methods that are commonly used in basketball analytics nowadays. The main ideas of
this work will then be summarised in the final conclusion, followed by a short appendix
containing the used code and further interesting information. (Note: The majority of the
used data was taken from the source https://www.basketball-reference.com/.)

2 Types of Statistics & Metrics in Basketball

When it comes to sports, basketball offers some of the greatest variety in terms of statistics
that can be gathered, thanks to the fast pace of the game. First, it is necessary to lay
the groundworks by explaining the most fundamental stat lines. Thereafter, some more
complex metrics related to individual as well as team performances will be presented.
These will all play an essential role in the analysis throughout the thesis.

2.1 Basic Statistics

While the NBA has continuously improved at the technological level, most of the basic
data are still being recorded manually today in a so called ”box score” (summary of the
most basic statistics). Here is a list of the most important statistics, accompanied by a
brief description of what they mean. (Note: These stats can be naturally extended to a
team.)

Points (PTS): The number of points a player scores in a game. 1 point is received
when scoring a free throw (FT), i.e. a shot that you get after being fouled, 2 points when
scoring a 2-point field goal (2FG), i.e. from inside the three point line, and 3 points when
scoring a 3-point field goal (3FG), i.e. from behind the three point line. The points often
times go hand in hand with the field goal percentage (FG%), which expresses the success
rate of the shots.
Assists (AST): The number of times a player passes the ball to a teammate, who then
scores.
Rebounds (REB): The number of times a player grabs the ball following a missed shot.
They can be subdivided into offensive (OREB) and defensive (DREB) rebounds.
Steals (STL): The number of times a player gains possession of the ball from an oppos-
ing player.
Blocks (BLK): The number of times a player blocks a shot of an opposing player.
Turnovers (TO): The number of times a player loses possession of the ball to an oppos-
ing player.
Personal fouls (PF): The number of times a player fouls an opposing player.

2.2 Advanced Metrics

Next, we will see some of the more complex metrics used by analysts nowadays. These
metrics tend to highlight key information that may be overseen, when only looking at the
basic box score of a game. Here a short example: Consider a player who plays most of the
game, takes a lot of shots, but hardly contributes on defence. At the end of the game, he
might have impressive box score stats, however, his team might have lost due to his lack
of defensive commitment. In this case, it is beneficial for coaches or analysts to consider
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other metrics, when assessing the individual performance of each player.

When it comes to these benchmarks in basketball, there is no ”holy grail” of all stats. In
other words, there is no optimal value that can be attributed to a player or to a team to
rate their overall performance. Here are some of the most commonly used metrics and the
logic behind them. (Note: The exact formula and calculations of the more computational
metrics can be found in Section 10). It is important to add that alternative formulas need
to be used when determining it for seasons before 1979-1980, since several components
used in the calculations were not recorded before then.)

2.2.1 Player Efficiency Rating

Introduced by John Hollinger in 2007, the Player Efficiency Rating (PER) was one of
the first player evaluation benchmarks to be used on an international level and can be
considered as the cornerstone of all-in-one metrics. The aim of the PER is to measure the
per-minute rating of a player, based on the pace of the game. The final value is composed
of the addition of positive stats (made shots, assists, rebounds, steals and blocks) and
the subtraction of negative stats (missed shots, turnovers and fouls). The NBA standard
PER is set at 15, making it easier to compare the performances of players. Since it mainly
focuses on the offensive display of a player, it neglects the defensive aspects to a certain
extent.

2.2.2 Box Plus-Minus

In 2020, Daniel Myers developed the newest version of the Box Plus-Minus (BPM), a
player evaluation metric that attempts to measure the player’s overall contribution to the
team when they are on the court, using only statistics that are widely available. The BPM
considers the box score stats of a player, the team’s overall performance and the player’s
position. The resulting BPM score estimates the number of points per 100 possessions
that a player contributes to the team, above or below the league average. In this sense, a
positive BPM would indicate that a player is contributing more than the average player,
whereas a negative score would mean that they are contributing less.

Figure 1: Histogram containing all player seasons from 1974-2019. Source:[9]

Given the bell-shaped curve of the histogram, the distribution seems to follow the normal
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law, centred at a mean BPM score of 0. This normal distribution would suggest that
most NBA players have a relatively average impact on the game (with a BPM score close
to the average 0), while fewer players have either a very positive or very negative impact.

2.2.3 Offensive/Defensive Rating

The Offensive and Defensive Rating (ORtg & DRtg) are two team and player evaluation
metrics which underline the performance on both ends of the court. It was first introduced
in the scientific paper A Starting Point for Analyzing Basketball Statistics by Kubatko
et al. (2007)[5]. In a nutshell, it represents a team’s efficiency by measuring the number
of points scored and allowed per 100 possessions. The reason why we use a per 100
possession index is due to the unpredictable pace of the game. In general, the number
of possessions a team has in a game heavily depends on the playstyle and the opponent.
Therefore, simply measuring the total points scored or allowed by a team per game would
not provide us with a normalised metric, which would make team comparisons ambiguous.
To compute the ratings, one first needs to calculate the number of possessions (POSS)
per game:

POSS = FGA+ 0.44FTA+ TO −OREB (1)

where FGA and FTA stand for field goals/throws attempted, TO stands for turnovers and
OREB stands for offensive rebounds. The formula is built on the idea that, by definition,
a turnover leads to an automatic possession change, while attempted field goals and free
throws only result in a possession change if the attacking team doesn’t grab an offensive
rebound. This then allows us to calculate the ORtg and DRtg using the following formula:

ORtg =
PTST

POSST

(2)

DRtg =
PTSO

POSSO

(3)

where T stands for the team itself and O stands for the opponent. Furthermore, this
simplified computation gives us the pace of the game:

Pace = 5 · POSS

MIN
(4)

where MIN stands for the total minutes played by all the players. Finally, the difference
between the ORtg and the DRtg of a team is referred to as the Net Rating (NRtg)

NRtg = ORtg −DRtg

and will be used in the upcoming sections.

2.2.4 Four Factors

The Four Factors (FF) is a team evaluation metric which covers 4 specific aspects of a
team’s performance: shooting (40%), turnovers (25%), rebounding (20%) and free throws
(15%). The idea came in Kubatko et al. (2007)[5], where they tried to find a logical
answer to what factors have the greatest impact on the outcome of a game. Moreover,
the percentages mentioned above represent the weighted importance of each component.
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The formulas of the different factors, which can be computed for both offense (O) and
defense (D), are the following:

OeFG% =
2FGT + 1.5 · 3FGT

FGAT

DeFG% =
2FGO + 1.5 · 3FGO

FGAO

(5)

OTO Ratio =
TOT

POSST

DTO Ratio =
TOO

POSSO

(6)

OREB% =
OREBT

OREBT +DREBO

DREB% =
DREBT

OREBO +DREBT

(7)

OFT Rate =
FTT

FGAT

DFT Rate =
FTO

FGAO

(8)

Here, the subscript T and O stand for team and opponent, while M and A stand for made
and attempted.

2.3 Self-developed Metrics

2.3.1 Player Performance Index

In order to measure the performance of players from different generations, I decided to
come up with my very own metric, which considers multiple key factors of a player’s ca-
reer. Named the Player Performance Index (PPI), the idea behind it is to split it into two
main parts and then calculate the product of both. The first part should be a composite
metric, composed of three advanced metrics, namely PER, BPM and NRtg. The second
part should take several high calibre achievements into consideration, such as the number
of Championships, MVP awards, All-NBA and All-Star selections, and playoff wins.

The reason why I selected the three advanced metrics mentioned above is because they
individually cover a different aspect of a player’s game, as well as being relevant when it
comes to determining the greatest player of all-time. While the PER puts more weight on
the offensive attributes of a player, the BPM tends to value the individual performance
at both ends (offence & defence). Finally, the NRtg considers the difference between
the offensive and defensive capabilities of a team when that particular player is playing.
Although they emphasise on different areas of the game, they are clearly correlated to a
certain extent (e.g. PER & BPM both take individual offensive performance into con-
sideration). While it may be possible to determine the correlation between the metrics
theoretically (i.e. by understanding the underlying mathematical relationships between
the variables), it can be quite difficult and time-consuming for complex formulas like PER,
BPM and NRtg. To avoid redundancy, a dimension reduction technique can be used to
linearly combine the three benchmarks, without having to exclude one of them.

In particular, I will be using a well-known dimension reduction method called Princi-
pal Component Analysis (PCA), allowing me to reduce the dimensionality of the data,
while keeping the most important information and relationships between the variables.
More precisely, this technique transforms the original variables into a new set of orthog-
onal variables, called principal components. These components are sorted in descending
order, according to their influence on the variance in the data, i.e. the first principal
component captures the most variance in the data, followed by the second principal com-
ponent etc. Then by selecting a subset of the principal components which are responsible
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for the majority of the total variance, a composite metric can be formed using these main
components.

To analyse the correlation between the benchmarks and apply the PCA technique, a
data set containing a large number of players, as well as their career PER, BPM and
NRtg, is necessary. I decided to simply take the 75 players who were nominated to the
NBA 75th Anniversary Team. These are considered to be the 75 best NBA players of
all-time, making it a great list to apply the PCA to. By collecting and organising this
data, I then created a matrix of size 75 × 3, representing the different players and their
respective indices (the associated CSV file can be found in the appendix). The next step
consists of normalising the data, since the three metrics are measured on different scales
and are not equally weighted otherwise. To perform the PCA, it is best to standardise
each column, so that it has a mean of 0 and a standard deviation of 1. The standardis-
ation of a random variable X is done by computing the following linear transformation
Z:

Z =
X − µX

σX

(9)

where µX is the mean of X and σX is the standard deviation of X.

Although the collected data might not be perfectly normally distributed, PCA is still
applicable, since it is a robust method which can be used on random variables of any
distribution. (Using the Shapiro-Wilk test on the BPM and NRtg, the null hypothesis
that the data is normally distributed is rejected, meaning that the data is most likely not
normally distributed.)

The first step of PCA consists of computing the covariance matrix of the standardised
data matrix X, which can be done by using the following formula:

Cov(X) =
1

n− 1
XTX (10)

In this case, it is equal to:

Cov(X) =

1.014 0.761 0.532
0.761 1.014 0.649
0.532 0.649 1.014


The next step is to simply calculate the eigenvectors and eigenvalues of the obtained
matrix. While the eigenvectors determine the direction of the maximum variance, the
eigenvalues represent the magnitude of variance associated to each eigenvector. The
three orthogonal eigenvectors are regarded as the principal components, each one of them
representing a direction in the 3-dimensional space defined by the three advanced metric
variables. They are then sorted in descending order, according to their corresponding
eigenvalue. In this case, they are the following:

v1 =

0.573
0.624
0.532

 , v2 =

−0.603
−0.119
0.789

 , v3 =

 0.555
−0.773
0.308

 , λ1 = 0.745, λ2 = 0.186, λ3 = 0.069

When it comes to deciding how many principal components should be considered in the
final metric, there are several methods that can be used, such as the variance propor-
tion method or the scree plot method. The variance proportion technique consists of
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selecting a sufficient number of components, in order to encompass enough of the total
variance. Generally, this proportion is set between 70%-80%. In our case, the first prin-
cipal component alone seems to be sufficient, since it is responsible for over 71% of the
data. Graphically, the ”elbow” of the scree plot can be used as a good cut off point, when
selecting the number of components.

Figure 2: Scree plot related to this example

The values of the first eigenvector can be used as the weights of the normalised variables
in the final composite metric, which is given by:

CM = 0.573PER + 0.624BPM + 0.532NRtg (11)

It is important to note that the standardised values for these variables will need to be
used in this formula, instead of the original ones. Furthermore, the standardisation of
the data and the complete PCA process entirely depends on the initial set of players you
work with, in this case, the list of 75 players and their respective attributes. It would be
ideal to work with the set of all former and current NBA players, however, this is not
feasible from a data collection stand point.

The second part of the PPI is a weighted linear combination of several individual ca-
reer achievements, as previously mentioned. Since the main objective of this metric is
to help settle the debate of the greatest player of all-time, it is only common sense to
give the most value to the greatest team prize in basketball: winning an NBA champi-
onship. For many people this is the only criterion that matters, however, there are also
other achievements that should be considered in my opinion. The MVP (Most Valu-
able Player) award is given to a single player who individually performs at a higher level
than any other player in the league throughout an entire season and is considered to be
the most prestigious individual award in basketball. Therefore, both championships and
MVP awards will be weighted equally, with a weight of 1. Next, All-NBA and All-Star
selections are also highly recognised achievements for a player, ranking them among the
very best in any given season. While the All-NBA teams are made up of 15 players in
total and are selected by broadcasters and sportswriters, the All-Star teams are composed
of 24 players in total and are voted for by the fans. Finally, the number of postseason
wins is a good indicator of how well a player is able to lead their team to victory when
it matters most. On average, the best-of-7 series of the NBA playoffs are settled within
5 games, meaning that each series distributes an average of 5 wins. Since there are a
total of 15 series during the playoffs, that would add up to 75 playoff wins that are usu-
ally distributed every season. Compared to championships or MVP awards, one can see
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that these achievements are far more attainable, which is why these factors will receive
a smaller weight (All-NBA selections weight: 1

15
, All-Star selections weight: 1

24
, Playoff

wins weight: 1
75
). An interesting observation is that these accolades are not normalised

by dividing by the total number of seasons played. This gives the benefit of the doubt to
those players who were able to compete at the highest level for a longer period of time.

Finally, the formula of the PPI is obtained by simply computing the product of these
two components:

PPI =max{0.573PER + 0.624BPM + 0.532NRtg, 0} ·
(
Championships+MV Ps

+
All −NBA selections

15
+

All − Star selections

24
+

Playoff wins

75

)
(12)

The reason why it is logical to take the maximum in the first component, is because the
standardised values of the PER, BPM and NRtg can possibly be negative, hence the first
component could end being negative. As a result, for two players who have an equal
CM < 0, the player having achieved more throughout their career would have a lower
PPI, which is contradictory. By these means, the floor of the index is simply set at 0.

2.3.2 Team Performance Index

The Team Performance Index (TPI) is a self-made team evaluation metric, which is
deemed to measure a team’s single season performance level, considering both the regular
season and the postseason (i.e. playoffs). Once again, the index will be composed of mul-
tiple factors, such as advanced metrics and collective achievements, all covering different
aspects of a team’s success.

The first component of the metric is the ratio of weighted linear combinations of the
offensive and defensive Four Factors. Regarding the offensive FF, three of the factors,
OeFG%, OREB% and OFT Rate, are positively associated with a team’s performance,
while a higher OTO Ratio indicates a poor offensive execution by the team. Meanwhile,
two of the defensive FF, DeFG% and DFT Rate, are negatively associated with the team’s
performance, whereas the DTO Ratio and DREB% are positively related. Furthermore,
as proposed in Kubatko et al. (2007)[5], both the offensive and defensive FF can be
attributed a certain weight, as previously mentioned. This leads to the establishment of
the following weighted linear combinations:

LC1 = 0.4 ·OeFG%+ 0.25 · (1−OTO Ratio) + 0.2 ·OREB%+ 0.15 ·OFT Rate

LC2 = 0.4 ·DeFG%+ 0.25 · (1−DTO Ratio) + 0.2 · (1−DREB%) + 0.15 ·DFT Rate

To balance the offensive (positively associated) and defensive (negatively associated) el-
ements out, one can consider the ratio of both, which finalises the first of the three
components:

R =
0.4 ·OeFG%+ 0.25 · (1−OTO Ratio) + 0.2 ·OREB%+ 0.15 ·OFT Rate

0.4 ·DeFG%+ 0.25 · (1−DTO Ratio) + 0.2 · (1−DREB%) + 0.15 ·DFT Rate
(13)
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The next component is simply the ratio between the offensive and defensive rating of the
team throughout the entire regular season. Since a higher ORtg is a positive indicator
and a higher DRtg is a negative indicator for a team, one can take the ratio due to sim-
ilar reasons as before. While the previous factor focuses on some specific key aspects of
a team’s offensive and defensive performance, this ratio attributes a more global value,
mainly considering a team’s performance over 100 possessions.

The last element of the TPI is composed of several team accolades: championship won,
playoff wins, All-NBA and All-Star selections, and regular season wins. Similar to the
PPI, these achievements are essential when comparing intergenerational teams and are
weighted according to a logical reasoning. Since only one team can win the NBA champi-
onship each season, it will once again receive the most important weight. Next, the ratio
between playoff wins and playoff games played illustrates how efficient the team is when
it truly matters. As before, the number of All-NBA and All-Star players in the team
also indicates how well a team is performing as a group of individuals. Here, the same
weight reasoning is used as previously explained. Last but not least, the proportion of
regular season wins shows how efficient the team has performed over a longer period of
time. Every NBA team plays a total of 82 games during the regular season, therefore,
the number of wins will be divided by 82 to simply obtain the winning percentage.

Finally, the formula of the TPI is given by the product of these three key factors:

TPI =
0.4 ·OeFG%+ 0.25 · (1−OTO Ratio) + 0.2 ·OREB%+ 0.15 ·OFT Rate

0.4 ·DeFG%+ 0.25 · (1−DTO Ratio) + 0.2 · (1−DREB%) + 0.15 ·DFT Rate

· ORtg

DRtg
·
(
Championship+

Playoff wins

P layoff games played
+

All −NBA selections

15

+
All − Star selections

24
+

Regular season wins

82

)
(14)

3 R Packages BasketballAnalyzeR & nbastatR

The package BasketballAnalyzeR for the statistical language R offers a wide variety of
functionalities when it comes to analysing and visualising basketball data. The open-
source package was developed by M. Sandri in 2020 and is accompanied by the book
Basketball Data Science: With Applications in R [16] by P. Zuccolotto and M. Manis-
era, a good read for those interested in understanding how data science can be used in
modern-day basketball analysis. Its development followed a primarily factual approach
and was carried out as part of the activities of the international network BDsports. While
its main goal is to provide powerful graphical features for scientific research and sports
analytics, it is the perfect tool for us to use when comparing intergenerational players and
teams analytically, as well as visually.

The R package nbastatR, originally developed by A. Bresler, is another powerful tool
when it comes to the collection and distribution of data related to the NBA. Offering a
wide range of basic and advanced stats, it provides reliable data dating back to the 1940s.
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4 Greatest Player of all-time

Ever since basketball has become an internationally televised sport, watched by millions
around the globe, the age-old ”GOAT” (Greatest Of All-Time) debate was born. More
often than not, the opinions of fans can be fuelled by emotions and biases towards a
specific player/team, which explains why there are so many different points of view on
the topic. To settle this ongoing debate to a certain extent, this section is devoted to
analytically comparing three of the greatest NBA players, who come up in almost every
GOAT discussion. These players are non-other than Kareem Abdul-Jabbar, Michael
Jordan and LeBron James. Not only were these players considered to be the best players
of their generation, they also presented impressive stats on a consistent basis, making
them the perfect candidates to study.

4.1 Comparison of basic Career Statistics

A good starting point is to look at the career per game averages of the most important ba-
sic statistics, both for the regular season and playoffs. Although it is clear that a player’s
performance does not revolve entirely around these stats, they can be seen as a reliable
indicator regarding individual offensive and defensive strengths.

Figure 3: Career regular season per game stats

While all three players were dominant in most areas, there are some subtle differences that
can be observed when comparing these career regular season stats. First of all, Abdul-
Jabbar and James have featured in more games, which is mainly due to them both having
played for over 20 seasons, while Jordan’s playing career lasted 15 seasons. Abdul-Jabbar
even holds the record for most minutes played with 57,446, while James is 3rd with 54,092.
Concurrently, Jordan is regarded by many as the most prolific scorer in NBA history, not
only because of his outstanding career average of 30.1 PTS/G, but also thanks to having
won a record-breaking 10 scoring titles, whereas Abdul-Jabbar and James both have 2
and 1 respectively. Meanwhile, the latter were able to show the longevity of their dom-
inance, by both having held the all-time most points scored record (Abdul-Jabbar with
38,387 until James surpassed this in 2023). The natural height advantage of Abdul-Jabbar
(2.18m) compared to the rest of the league, allowed him to repeatedly post good numbers
in the rebounds and blocks categories, which is a common trend for players at his position
(center). Furthermore, most of his field goal attempts came from very close range, where
he mainly used his well-known signature move, the ”skyhook”. This allowed him to main-
tain an incredible FG% of 56%, making him the 8th most accurate scorer in NBA history.
Moreover, Jordan and James played at the shooting guard and small forward positions,
where players are expected to be more efficient from distance shooting. On the one hand,
Jordan was a very clutch player who thrived in high pressure situations, as was the case
for his incredibly high FT% of 83.5%. On the other hand, NBA teams have grown fonder
of outside shots, which has translated to an increased focus on these types of shots, as can
be seen for James’ impressive 3P% of 34.5%. Out of the three players, James seems to be
the one who created the most scoring chances for his teammates, which is underlined by
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the fact that he ranks 4th in all-time assists, with 10,420. At the same time, he also tended
to turn the ball over more frequently, which is not surprising, since a linear correlation
can generally be observed between assists and turnovers (see Section 7). Finally, Jordan
was known for his gritty defence, which lead to him winning the 1988 defensive player of
the year award and getting a significant amount of steals (4th of all-time in steals with
2,514).

Graphically, the profiles of these three players can be analysed with a so-called Radial Plot.
Ideal for comparing multivariate data, each variable is placed on a different axis and its
numeric value is represented by the distance to a common centre point. Next, the plotted
values of the variables are joined, creating a type of polygon. The more symmetrical this
shape is, the more evenly distributed a player’s strengths are. Since all of the axes have
the same scale, it is important to choose the specific variables carefully, otherwise some
variables might be undersized in the final plot, making it hard to interpret differences
between players. A way to work around this is to simply standardise the data, which
leads to all the variables having the same scale. Similar to before, this normalisation can
be done using the list of the 75 players from the NBA 75th Anniversary Team. It is also
noteworthy that the blue circular line corresponds to the zero value of each standardised
variable, simply representing its actual average.

Figure 4: Standardised radial plots representing basic career stats

The three radial plots tend to confirm the previous analysis. On the one hand, Jordan
and James rank above average when it comes to points, assists and steals. Jordan even
seems to be among the best and most consistent scorers and defenders, since the points
for these variables are close to the maximum. On the other hand, Abdul-Jabbar surpasses
the norm in the rebounds and blocks categories, clearly illustrating his inside superiority.

While the regular season stats are a good indicator of consistency, the postseason stats
show how well a player can perform when it matters most. Therefore, it is interesting to
compare these to the regular season averages, to see if there is any change in efficiency
when playing with the threat of elimination.

Figure 5: Career playoffs per game stats
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A brief comparison of both tables leads to the conclusion that all three players were able
to maintain the same level of consistency throughout the playoffs as for the regular season.
Although there is a smaller sample set of games to measure from, it is no coincidence that
these three players make up the top three postseason points scorers of all-time (James
1st, Jordan 2nd & Abdul-Jabbar 3rd). In particular, Jordan holds the single game playoffs
record for points scored with 63, which isn’t surprising, since his scoring ability against
the toughest opponents was head and shoulders above the rest of the league. In addition,
at least one of them is represented in the top five of all-time playoffs assists (James 2nd),
rebounds (James 4th), steals (James 1st & Jordan 3rd) and blocks (Abdul-Jabbar 2nd).
Furthermore, James is also closing in on the record for the most postseason triple-doubles
(i.e. when a player achieves double-digit values in three positive statistical categories)
with 28, which highlights his ability to impact a game in multiple ways.

To simplify the visualisation of the shooting percentages of the three players, one can
illustrate them in a bubble plot containing all 75 players from the above-mentioned list.
A bubble plot is a 2-dimensional plot where each player is represented by a bubble in the
plane. The x-axis, y-axis, bubble colour and size all correspond to one of four variables
(here 2P%, 3P%, FT% & total shots attempted respectively). It can also be advantageous
to rescale the bubble sizes between 0 and 100, to make the final plot easier to interpret.

Figure 6: Bubble plots of career shooting percentages in the regular season & playoffs

A first observation that can be made is that all three players shot an above average per-
centage from 2-point distance, with Abdul-Jabbar and James ranking among the very
best. Simultaneously, they seem to be among the players taking the most shots per game,
which indicates the individual responsibility they took when it comes to scoring. In gen-
eral, the smaller the distance to the upper right corner, the more efficient a shooter is.
Therefore, James can be regarded as one of the most consistent players, throughout both
the regular season and playoffs. It is also noticeable that many players have a 3P% equal
to 0. While some players like Shaquille O’Neal only rarely took 3-pointers and hardly ever
made them, the most common reason is due to the belated introduction of the 3-point
line in 1979. Concerning the FT%, Jordan’s percentage was slightly above the standard,
while Abdul-Jabbar’s and James’ were close to the list’s average. Overall, one can notice
that there are no major differences in the shooting percentages between the regular season
and postseason.
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(Note: Since James is still an active NBA player at the time of writing, the mentioned
stats and records are subject to change, as he continues to strive to be the best player of
all-time.)

4.2 In-depth Analysis of individual Strengths

While the basic stats offer a solid foundation for the GOAT debate, it is clear that they
are insufficient when it comes to comparing intergenerational players, since they don’t tell
the full story. Therefore, it may be interesting to analyse the longevity, success and other
factors of each player’s career.

First of all, longevity is a crucial argument when debating about the greatest player
of all-time, since it shows how long a player was able to compete at the highest level.
In this sense, a consistent, high-performing career is valued more than a brief, high-peak
one. Therefore, one can analyse the PER of a player based on his age, while also taking
into account the total number of games played.

Figure 7: Bubble plot of PER with respect to age

A first look at the plot reveals that both Jordan and James were able to steadily improve
their PER up until a certain age (approximately 27-28), before slowly declining towards
the tail end of their career. Meanwhile, Abdul-Jabbar’s PER tended to fluctuate in his
20s, before decreasing in his 30s. Overall, the evolution of the PER of all three players
is remarkable and underlines phenomenal careers, since it is very common for basketball
players to be in their prime between the ages of 25-30 (Kalén et al., 2020)[4]. Interest-
ingly, Jordan and James both recorded their highest PER at the age of 24, with a value of
31.7 and were able to outperform Abdul-Jabbar at almost every age. In addition, Jordan
still holds the all-time highest career average PER with 27.9. As regards to the number
of games played each season, Abdul-Jabbar and Jordan featured in almost all possible
games of each season, with the exception of a few outliers due to injury (Abdul-Jabbar in
1977 & Jordan in 1985) and a comeback out of retirement (Jordan in 1994). On the other
hand, James’ games and minutes played have decreased significantly over the past few
years, an unfortunate trend among the majority of NBA teams nowadays, in an attempt
to rest their star players for the playoffs.

Another determining factor of a player’s greatness is their individual and team success
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throughout their career. While there are many smaller awards to be won, here are some
of the key achievements a player can reach (in descending order of importance accord-
ing to personal opinion): championships, MVPs, Finals MVPs, scoring titles, All-NBA
selections, All-Star selections and game winners. In this case, a bar chart can be used to
visually identify the differences between the players in each category.

Figure 8: Bar chart with career achievements

Regarding the number of championships won, Abdul-Jabbar and Jordan have both en-
joyed an equal amount of team success, while James continues to closely chase them.
Next, the MVP and Finals MVP awards highlight the individual dominance of a player,
the latter given to outstanding performances when it matters most. While all three play-
ers have won a similar amount of MVPs, it is noteworthy that Jordan won the Finals
MVP in each of his 6 finals appearances, making him and Shaquille O’Neal the only play-
ers in history to hold a 100% record. Moreover, Jordan is also head and shoulders above
any other player in the scoring category, having won the scoring title a record 10 times.
Abdul-Jabbar and James have featured in the most All-NBA and All-Star selections, both
holding the all-time records in these categories. Here, it is important to consider the fact
that Jordan played significantly fewer seasons (15) than Abdul-Jabbar (21) and James
(20), which has a certain impact on these numbers. Finally, Jordan and James have
been able to win the game for their team on several occasions throughout their career, in
contrast to Abdul-Jabbar, who only scored a total of 3 game winners. It is essential to
distinguish the type of game these game winners are scored in, since the playoffs have a
greater significance, giving James a slight edge in terms of being clutch when it matters
most. Overall, Jordan currently leads the way in total game winners made with 9. It is
important to keep all these numbers in mind, as they play a vital role in the computation
of the PPI (see Section 4.3).

In data analysis, it can occasionally be of interest to compare players according to multiple
distinct variables at once. This is known asMultivariate Data Analysis and was previously
already used for the construction of the PPI, using the PCA method. Another frequently
used dimensionality reduction tool is the Multidimensional Scaling (MDS) method, which
aims to find a low-dimensional representation of a dataset. This can lead to a coloured 2-
dimensional plot, allowing us to visually determine the pairwise (dis)similarities between
players. Similar to the PCA algorithm, the first step of MDS consists of defining a matrix
∆n = (dij)i,j∈N, known as the dissimilarity matrix. Here,

dij := distance between ith and jth player.
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While there are many distance metrics to choose from, we will be working with the
Euclidean distance, hence

dij =

√√√√ n∑
k=1

(xik − xjk)2 (15)

where xik and xjk are the values taken by the variableXk for the players i and j. The main
goal of MDS is then to reduce every player to anm-dimensional variable space (m ≪ n), in
a way that the newly obtained dissimilarity matrix ∆m matches ∆n as closely as possible.
The first step of this reduction is done by computing the Gram matrix, a symmetric matrix
representing the pairwise (dis)similarities in a lower-dimensional space. It is obtained by
squaring each entry of the matrix ∆n, followed by a centering operation. This operation
consists of subtracting the row and columns means from every element, before adding the
overall mean to every element. This is an important procedure, as it guarantees that the
matrix is centered and has 0 mean, a necessary requirement for the subsequent calculation
of the eigenvectors and eigenvalues. Just like for the PCA algorithm, it is then generally
of interest to determine the new number of dimensions that should be used for our final
dissimilarity matrix ∆m. While the scree plot method is a valid method for MDS (as for
PCA), we will make use of the stress index S, which measures in percentage how well the
matrices ∆n and ∆m fit. As a general rule, one can remember that the value of the stress
index should be close to 0 and should preferably not exceed 20%. After having found
the dimension m which minimises the stress index, one can finally compute the matrix
∆m, which is composed of the m most significant eigenvectors of the Gram matrix. Last
but not least, the data can be plotted if m ∈ {1, 2, 3} and can be rotated or reflected to
improve readability, since the outcome is rotation and reflection invariant.

In this particular case, we will be using the R function MDSmap, for which the dimen-
sion (m = 2) is already fixed beforehand. More specifically, it is based on Kruskal’s
non-metric approach, for which the stress index is calculated by the following formula:

S =

√∑n
i,j(δij − dij)2∑n

i,j d
2
ij

(16)

where δij is the distance between player i and j in the lower-dimensional space. In our
case, the variables will be the career totals of PTS, AST, REB, STL and BLK, applied
to the same list of 75 players.
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Figure 9: 2-dimensional MDS plot of 75 players

Figure 10: Level plots based on career totals PTS, AST, REB, STL & BLK respectively

The obtained stress index S has a value of 11.68%, validating the choice of 2 dimensions.
In the first plot, players are placed based on their similarity level, i.e. the closer they are,
the more similar features they share. It is immediately noticeable that there is a large
group of players clustered around the origin (0,0) of the plot, while they become more
separated as you move further away. Furthermore, one can observe that all three players
are so-called outliers, meaning that their career totals are extreme values compared to
those of the other players on the list. However, this is no surprise, as the previous
analysis in Section 4.1 mentions that all three players are among the leaders for most of
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the basic career stat lines. While the 2D plot on its own can already help understand
if a player’s performances were irregular, it doesn’t necessarily indicate in which way it
differs from the rest. Therefore, it can be beneficial to colour the player points according
to one of the several variables. As a consequence, one can consider the level plot, which
resembles a topographic map. It is obtained by fitting the chosen variable with a surface,
which is determined with a method of polynomial local regression, and it has the same
axes as the 2D MDS plot. By considering all of the level plots at once, one can get a
better understanding of the meaning of a player’s position. Overall, the career totals
tend to increase from right to left, which visually confirms the previous assessments of
Abdul-Jabbar’s, Jordan’s and James’ career achievements. It is however recognisable that
Abdul-Jabbar and James are situated further to the left than Jordan, which may seem
paradoxical at first. This is largely due to their longer careers, which allowed them to
accumulate better total stats. Therefore, they seem to have the edge when it comes to
the longevity of their career.

4.3 Comparison of advanced Metrics

A final way to evaluate a player’s career is by rating their performance according to an
advanced metric, as seen in Section 2.2. Let us first take a look at the advanced metrics
PER, BPM and NRtg.

Figure 11: Career averages of PER, BPM & NRtg

Firstly, Jordan and James seem to have been the most offensively efficient players out
of the three, both having an outstanding career average PER. They also lead the way
regarding the BPM, suggesting that they had a greater impact on the team’s success
when they were on the court. Finally, Abdul-Jabbar’s and Jordan’s high NRtg show that
they were dominant players on both ends of the court, making important offensive and
defensive contributions for the team.

The values of these advanced metrics, together with the previously seen career achieve-
ments, can be used to evaluate the players according to the self-developed PPI metric.

PPIKAJ =(0.573 · 1.103 + 0.624 · 0.767 + 0.532 · 1.369) ·
(
6 + 6 +

15

15
+

19

24
+

154

75

)
= 29.138

PPIMJ =(0.573 · 2.141 + 0.624 · 2.264 + 0.532 · 1.183) ·
(
6 + 5 +

11

15
+

14

24
+

119

75

)
= 45.444

PPILJ =(0.573 · 1.921 + 0.624 · 2.093 + 0.532 · 0.622) ·
(
4 + 4 +

19

15
+

19

24
+

182

75

)
= 34.180
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Based on this index alone, Jordan seems to have had the most successful career out of the
three, with James coming in at 2nd and Abdul-Jabbar at 3rd. This evaluation appears to
be fair, since Jordan delivered strong analytical reports in most of the analysed categories,
especially regarding the number of championships he won (arguably the most important
factor in the GOAT debate) and his remarkable scoring ability which is still unmatched to
this day. The only aspect in which he is inferior to the other two is in terms of longevity
and some career total stats, which can be compensated by the incredible consistency he
had at his peak, with his 100% win record in the finals. That being said, since James
is currently still an active NBA player, this evaluation could possibly still change in the
future, making James’ last years of his career all the more exciting. One can also take a
look at the top 10 players of all-time based on the PPI.

Figure 12: Ordered list of top 10 players of all-time according to PPI

According to this table, it was the right decision to analyse the three chosen players,
since they make up the top three. Ultimately, the proposed PPI metric offers multiple
strengths. By incorporating several advanced metrics, as well as career accolades in a
unique way, a player is evaluated based on diverse factors, each considering a different
trait of a player’s career success. Moreover, thanks to PCA, one can consider a linear
combination of some of the most respected advanced metrics, while limiting the total
redundancy. In addition, the weights of the career achievements are attributed according
to a valid reasoning, valuing certain achievements more than others. Finally, thanks to
the transparency and comprehensiveness of the metric, it is relatively easy to compute
and understand the PPI. It is however important to emphasize that there is no single
metric that is ”correct” and can fully determine the GOAT, since every metric has its
up- and downsides. All in all, the GOAT debate will continue to be an open question,
discussed by fans all around the world.

5 Greatest Team of all-time

A natural extension of the GOAT debate among players is to analytically determine which
single season team was the greatest of all-time so far. In particular, three of the most
outstanding teams will be analysed in closer detail: the 1986-1987 Los Angeles Lakers
(LAL), the 1995-1996 Chicago Bulls (CHI) and the 2016-2017 Golden State Warriors
(GSW). Considered by many as the greatest teams to have ever played and having each
won the championship in their respective season, they form the perfect trio to conduct
our analysis on. (Note: For simplicity reasons, these single season teams will be referred
to as the Lakers, the Bulls and the Warriors.)
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5.1 Comparison of basic Team Statistics

Once again, it is useful to take a look at the basic team statistics throughout the regular
season and postseason, to get a better understanding of the strengths of each team.
Unlike for players, for teams it is easier to assess both their offensive (O) and defensive
(D) performances, offering an additional perspective to the analysis. Here, the defensive
stats simply refer to the average performance of their opponents.

Figure 13: Regular season team per game stats

Figure 14: Playoffs team per game stats

First of all, one can notice that all three teams had a high winning percentage during
the regular season, which remained consistent throughout the playoffs. The Bulls won
an unprecedented 72 out of 82 regular season games, while the Warriors remarkably only
lost a single game in the postseason. When it comes to scoring, the Lakers and Warriors
delivered exceptional offensive performances, which they even improved on during the
playoffs. The Lakers even hold the all-time record for points per game in the playoffs
among the teams having reached the finals with 120.6. However, defensively, the Bulls
were able to keep their opponents to a far lower average point total, primarily because
they had three NBA All-Defensive players in Dennis Rodman, Scottie Pippen and Michael
Jordan. Overall, this may suggest that the league-wide scoring average was lower in 1995-
1996 than in other years, a trend that will be analysed in Section 6. As regards to the
regular season shooting percentages, each team seemed to have their own strengths and
weaknesses. Meanwhile, the postseason brought the best out of the Warriors, which
lead them to the best 2P%, 3P% and FT% among the three teams, this largely thanks
to the phenomenal shooting ”splash brothers” Stephen Curry and Klay Thompson, as
well as the 4 time scoring champion Kevin Durant. This underlines the dominance they
showcased during the playoffs, which goes hand in hand with their winning percentage.
On the other hand, the Bulls once again emphasized the importance of their defence,
holding their opponents to very low shooting percentages. Similar to the scoring category,
the Lakers and Warriors also had a high number of assists per game, showing how well
they played collectively. Concurrently, the Bulls had significantly fewer assists, which
could be a sign of the team relying more heavily on individual performances (e.g. by
Michael Jordan), rather than team efforts. All three teams performed equally as efficient
with respect to rebounding, the Bulls being especially dominant on the offensive end,
the Warriors grabbing the most defensive boards and the Lakers having a great balance
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between the two, in large thanks to their star center Kareem Abdul-Jabbar. Another
crucial factor of a team’s defensive ability is the number of steals and blocks they can get
in a game. In this case, the Bulls and the Warriors were able to force a lot of turnovers by
repeatedly stealing the ball, whereas the Lakers and the Warriors were extremely efficient
at obstructing the opponent’s shots by blocking them. Finally, in terms of personal fouls
per game, the teams of the 20th century tended to commit more fouls than the Warriors
did, hinting to a less aggressive and physical playstyle nowadays.

5.2 Individual Performance Distribution among Teams

After having looked at the overall collective performance of the teams, it is equally as
important to study the individual performances. Since basketball is a team sport, it is
crucial for multiple players to contribute, without relying too heavily on a one-man-show
by their best player. Therefore, it can be interesting to analyse the variability and in-
equality regarding the shooting and scoring strengths within each team.

In the field of Statistics, variability can be summarised as the extent to which data
points in a dataset vary from one another. In other words, variability simply reveals how
spread out the data are. There are many different nonnegative indices that can be used
to measure the variability of a random variable X, whose values are generally close to 0
if all the data are equal. In this study case, the selected indices are none other than the
Range (difference between maximal and minimal value in a dataset) and the Variation
Coefficient (V C), which is simply the ratio of the standard deviation to the mean:

V C =
σX

|µX |
(17)

where N is the number of values xi (i = 1, ..., N) that the variable X takes, µX is the
mean of these values and

σ2
X =

∑N
i=1(xi − µX)

2

N
. (18)

The normalised index V C is especially useful when studying the variability of multiple
variables with different units of measurement or different means. One can add an addi-
tional layer of complexity by weighting the average µX and the standard deviation σX

in a specific way. The weighted variation coefficient (WV C) is particularly useful when
comparing the variability of a dataset, composed of variables with different sample sizes
and means. The basic computation of the variation coefficient can occasionally be inap-
propriate, as it gives more weight to data subsets with higher variances. The formulas for
the weighted mean and the weighted standard deviation are

wµX =

∑
xi · wi∑
wi

(19)

wσX =

√∑
(xi − wµX)2 · wi∑

wi

. (20)

Here, every single observation is weighted differently, based on the values of the weighting
variable.

The variability is a useful tool when analysing the individual performances within a team,
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since it reveals whether it is well-balanced or not. On the one hand, high variability with
variables such as points, assists and rebounds, may show that multiple players are making
the most of their individual strengths. On the other hand, when it comes to efficiency
variables, like shooting percentages, high variability can suggest that a few players are
carrying the whole team, while others are performing below the team standards. It is this
second category of stats that will be further analysed for all three teams, to see if they
functioned as well-oiled machines. In particular, the shooting percentages (2P%, 3P% &
FT%) of the players having played more than 500 minutes during the regular season will
be plotted in a variability diagram, where each player is represented along a vertical axis
by a bubble, of size according to the total number of shots taken. Moreover, the total
number of shots attempted for each shot type, is considered as the weighting variable, so
that the obtained bubbles are of proportional size.

Figure 15: Variability diagrams of individual shooting percentages during regular season

The Lakers and the Bulls present the lowest variation coefficient and range regarding
shots from 2-point distance, which is visible due to the formed clusters in the respective
diagrams. Even though most of the Warriors players boast an impressive 2P%, they have
a higher variability in this category compared to the other two teams. The exact opposite
can be said for 3-point shooting, since the Warriors seem to be a well-balanced team from
distance, while the variation coefficient and range of the Lakers and the Bulls is relatively
high in the 3P% class, mainly due to the 3-point shot not having the same importance
then as it does nowadays. It is noteworthy that the maxed-out range of the Bulls is largely
due to single players taking only very few shots and then either making or missing them.
In addition, for both 2P% and 3P%, it seems like the players taking the majority of the
shots were also the most efficient. This validates the idea that players who take more
shots tend to be more in rhythm, allowing them to shoot a better percentage in the long
run. Finally, the Lakers present the lowest variability with respect to FT%, whereas the
percentages of the Bulls and the Warriors were slightly more widespread. Overall, the
team with the lowest summed variation coefficients is the Warriors, with a total of 0.32.
This observation seems to match the general trend of the NBA over the past few years,
where players have been required to become more diverse and have multiple strengths, in
particular an efficient shooting ability.

Originating from the field of economics, inequality analysis is used to measure the dis-
tribution of income or wealth in a country. It ranges from equal distribution (wealth is
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distributed evenly) to maximal inequality (one individual holds all the wealth, while all
the others are left with nothing). However, neither one of these extremes is attained in
practice. The Gini index and the Lorenz curve are tools that are used to identify the
extent of the distribution analytically and visually. The Gini coefficient ranges from 0
(perfect equality) to 1 (maximal inequality) and is defined as the ratio of the area between
the Lorenz curve and the line of perfect equality, to the total area below the perfect equal-
ity line. The Lorenz curve is obtained by plotting the cumulative proportion of wealth
held by each percentile of the population, with respect to the cumulative proportion of the
population. Generally speaking, the Gini index measures the relative difference between
the actual wealth distribution and the perfectly equal distribution.

In the case of basketball, inequality analysis can be conducted on variables, such as
points scored by a team. Analogously, the wealth can symbolically be replaced by points,
revealing whether a team is well-balanced in terms of scoring or not. For the analysis,
the 8 players having scored the most points throughout the regular season are chosen and
are listed in a table in increasing order of total points scored. The main reason why only
a restricted amount of players are chosen, is because the inclusion of players who hardly
play would inflate the observed inequality, leading to misinterpreted results. The next
step consists of combining the number of players and the total points scored row for row,
giving us the cumulative values Cpli and Cptsi for the player in the ith row. After that,
these cumulative values are divided by the total number of players and points scored, to
obtain the cumulative percentages Cpli% and Cptsi%. Here, Cptsi% simply indicates the
proportion of points scored by the first Cpli% players of the list. The Lorenz curve is
then obtained by joining the points plotted at (Cpli%, Cptsi%). As previously explained,
the Gini coefficient G is non-other than the following ratio:

G =

∑N
i=1(Cpli%− Cptsi%)∑N−1

i=1 Cpli%
(21)

Figure 16: Lorenz curve for points scored during regular season

One can immediately notice that the Gini index of the Bulls is the greatest with a value of
41.55%, suggesting that very few players scored the majority of the points. This turns out
to be very true, since Michael Jordan and Scottie Pippen were responsible for a staggering
52.29% of the scoring during the regular season. This sort of reliance on only a handful
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of players can be detrimental for a team when foul trouble or injury problems strike.
The Warriors have a Gini index valued at 36.55%, which is still relatively high, largely
due to the fact that they had three of the best scorers of the last decade on their roster.
Kevin Durant, Klay Thompson and Stephen Curry together scored 65.62% of the total
points in the regular season. Finally, the Lakers seemed to be a more evenly balanced
offensive team, posting a value of 30.86%. This is in large part due to their star playmaker
Magic Johnson, who tended to create countless scoring opportunities for his teammates,
while scoring a healthy amount of points himself. Overall, out of the three teams, the
Lakers were the ones that played the best team basketball scoring wise, without relying
too heavily on a certain individual.

5.3 Comparison of advanced Metrics

The last step of the all-time greatest teams comparison consists of evaluating them ac-
cording to multiple advanced metrics, all of them defined in Section 2.2. Let us start off
by taking a look at the Offensive/Defensive Rating, as well as the Four Factors of each
team.

Figure 17: Pace, Offensive/Defensive Rating & Four Factors of each team

The upper left graph presents the pace (possessions per minute) of the opponents with
respect to the pace of the teams themselves. The Lakers and the Warriors recorded a
very similar pace in the regular season, while the Bulls adopted a significantly slower
playstyle. This matches the previous observation that the Bulls scored far fewer points
than the other two teams, while also conceding fewer points. In general, one can notice
that the own pace was almost matched by the pace of the opponent, possibly implying
that the pace of a team depended largely on the league-wide average pace. This alternat-
ing trend will be further analysed in Section 6.

The upper right graph shows both the Offensive and Defensive Ratings of the three
teams. This is different to the average points scored per game since it is based on the
scoring abilities per 100 possessions. In other words, the pace at which the game is played
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is neglected, providing us with a better metric of how efficient a team was offensively
and defensively. Regarding the ORtg, the Warriors have a slight edge as opposed to the
Lakers and the Bulls, averaging almost 1 point more per 100 possessions. On the other
hand, the Bulls were clearly the more dominant force defensively, being the only team
of the three to hold their opponents to below 100 points per 100 possessions. Overall,
this graph removes the general misconception that the Bulls were not an efficient scoring
team, since they almost coincided with the other teams over 100 possessions.

The two bar plots represent the difference between the offensive and defensive Four Fac-
tors of each team and the average of each factor. The value and the size of this difference
helps interpret the relative strengths and weaknesses of the three teams. First of all, the
Warriors have a slightly better offensive effective field goal percentage than the other two
teams, which matches the previous variability analysis done in Section 5.2. Meanwhile,
they were all able to keep the opponent’s shooting efficiency at a same level. Despite all
three teams having a very similar offensive turnover ratio, the Bulls were able to force
the opponent to commit more turnovers per 100 possessions. Once again, this underlines
how aggressive and committed their defensive playstyle was. The biggest differences can
be seen in the rebounding category. While the Warriors were far less efficient at grabbing
available rebounds on the offensive end, they showed an impressive dominance in defen-
sive rebounding. This overlaps with the previous assessment in Section 5.1. Finally, the
Lakers were able to get to the free throw line the most frequently, by drawing more fouls
from the opponent while shooting. At the same time, they were also the team who gave
away the most free-throw attempts per field-goal attempts, suggesting that they had to
deal with a higher number of sloppy defensive errors. On the other hand, this may have
simply been a league-wide trend at the time.

A last step of the comparison consists of computing the self-developed metric TPI for
all three teams and seeing how the different teams rank against each other. It is im-
portant to remember that the TPI takes several factors into account, such as the Four
Factors, the Offensive/Defensive Rating and team achievements.

TPILAL =
0.4 · 0.528 + 0.25 · (1− 0.14) + 0.2 · 0.341 + 0.15 · 0.278

0.4 · 0.476 + 0.25 · (1− 0.138) + 0.2 · (1− 0.663) + 0.15 · 0.23

· 115.6
106.5

·
(
1 +

15

18
+

3

15
+

3

24
+

65

82

)
= 3.382

TPICHI =
0.4 · 0.517 + 0.25 · (1− 0.131) + 0.2 · 0.369 + 0.15 · 0.217

0.4 · 0.482 + 0.25 · (1− 0.161) + 0.2 · (1− 0.711) + 0.15 · 0.222

· 115.2
101.8

·
(
1 +

15

18
+

2

15
+

3

24
+

72

82

)
= 3.611

TPIGSW =
0.4 · 0.563 + 0.25 · (1− 0.132) + 0.2 · 0.228 + 0.15 · 0.204

0.4 · 0.486 + 0.25 · (1− 0.135) + 0.2 · (1− 0.749) + 0.15 · 0.198

· 115.6
104

·
(
1 +

16

17
+

4

15
+

4

24
+

67

82

)
= 3.749
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According to this index, the 2016-2017 Warriors seem to have been the most dominant
single season team in NBA history. This comes as no surprise, as they were a team with a
record-breaking 4 All-Stars in Kevin Durant, Stephen Curry, Klay Thompson and Dray-
mond Green. This incredible group of individuals, combined with impressive collective
stats, makes up the perfect contender for the greatest team of all-time. An ordered list
of the top 10 teams according to the TPI is given down below.

Figure 18: Ordered list of top 10 teams of all-time according to TPI

While the 1995-1996 Bulls finish close behind in 2nd place, the 1982-1983 76ers are sur-
prisingly ranked in 3rd. Based on the TPI alone, it turns out that the 1986-1987 Lakers
were not among the three best single season teams of all-time. Furthermore, Michael
Jordan’s Bulls teams appear an impressive four times in the top 10 ranking. This either
means that Jordan was fortunate enough to play in some of the best teams to have ever
existed, or that he was almost single-handedly able to lead his team to success over and
over again. According to the analysis in Section 4, the latter seems to be more likely. The
main logic behind the TPI index coincides with the one of the PPI, taking both advanced
metrics and team accolades into account to simultaneously value multiple strengths of a
team. Generally speaking, this makes it a strong benchmark for comparing intergenera-
tional teams and evaluating the greatest teams of all-time. Once again, it is important to
state that every metric has its limitations and that there is no such thing as the ”perfect”
metric to measure a team’s success. All in all, the greatest team of all-time will continue
to be up for discussion for many years to come.

6 Identifying the different Eras in NBA History

Having covered some controversial discussion topics, the next section deals with some-
thing that most fans can agree on: the game in today’s age is vastly different from how it
was decades ago. The introduction of the 3-point line, the frequent rule changes and the
continuously evolving playstyle are just some of the changes that we have witnessed over
the years. Therefore, it may be interesting to determine the different NBA eras based on
the statistics alone. With the help of k-means clustering, the aim is to group seasons into
clusters with common traits and, consequently, identify the specific eras.

Cluster Analysis is an unsupervised classification method, where the goal is to divide in-
dividual data points into groups (i.e. clusters) based on the similarity of their attributes.
In other words, cases that are grouped in the same cluster are supposed to share common
characteristics with one another, while being significantly different to the cases in other
clusters. Moreover, this natural grouping method can be regarded as a type of dimen-
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sionality reduction technique, as large data sets can be reduced to several homogeneous
groups, making it easier to interpret the data. A commonly used partitioning technique
is the so-called k-means Clustering method. In general, it can be divided into two main
steps: identifying the number of clusters to be defined and determining the respective
clusters.

An important notion for the first step is Pearson’s Correlation Coefficient η2 (also known
as Explained Variance), which measures the clusterisation quality with respect to the
number of clusters. More specifically, it is the ratio of the Between Deviance (BD) to the
Total Deviance (TD). Let N be the number of individual cases grouped into k clusters,
then for a given variable X we have

BD =
k∑

j=1

(µj − µ)2nj (22)

where µ is the overall mean of X, µj is the mean of X only for the cases belonging to the
jth cluster and nj is the number of cases in the jth cluster,

TD =
k∑

j=1

nj∑
i=1

(xij − µ)2 (23)

where xij is the value of the ith case of the jth cluster. This ratio, ranging from 0 to 1,
helps determine the overall clusterisation quality, with a higher value indicating a better
separation between clusters. Concurrently, the number of clusters should remain rela-
tively low to simplify interpretation.

The second step consists of a repetitive algorithm that tends to optimise the partitioning
of the cases into k distinct clusters. First of all, k cluster centers are chosen randomly,
then each case is assigned to its closest cluster, according to a well-defined distance (usu-
ally the Euclidean distance). Next, the center of each cluster is recalculated so that the
sum of distances between the cases in a particular cluster and its center is minimal. The
re-assignment of the cases and the re-computation of the centers is then repeated until
the centers become relatively stable.

In our case, the considered variables will be a collection of basic stats (2-pt. field goals
made, 2-pt. field goals attempted, 3-pt. field goals made, 3-pt. field goals attempted,
free throws made, free throws attempted, off. rebounds, def. rebounds, assists, steals,
blocks, turnovers, personal fouls, points & Pace), while the observations will simply be
the seasons from 1980-2023. With the help of the kclustering method in R, the graph
summarising the average Pearson correlation coefficient with respect to the number of
clusters is obtained.
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Figure 19: Quality of clusterisation wrt. number of clusters

The explained variance naturally improves with the number of clusters. A general rule of
thumb is that values higher than 50% are deemed as acceptable. Keeping in mind that
the number of clusters should be held low, one can consider the percentage increase of
the explained variance, which is represented by the dashed line. In particular, a threshold
should be fixed, which determines whether an additional cluster is justified or not. In our
case, the threshold will be set at 10%, meaning that an increase below this percentage
doesn’t warrant an extra cluster. Looking at the figure, one can recognise that the optimal
number of clusters seems to be 3, with a clusterisation quality of η2 = 62.7%.

The next step of the clustering algorithm can be executed by running the kclustering

function once again, this time specifying the number of clusters. As a result, the following
3 clusters are obtained, each of which supposedly represents a different era.

Era 1 Era 2 Era 3
1980, 1981, 1982, 1983, 1995, 1996, 1997, 1998, 2016, 2017, 2018, 2019,
1984, 1985, 1986, 1987, 1999, 2000, 2001, 2002, 2020, 2021, 2022, 2023
1988, 1989, 1990, 1991, 2003, 2004, 2005, 2006,

1992, 1993, 1994 2007, 2008, 2009, 2010,
2011, 2012, 2013, 2014,

2015

Table 1: 3 different eras based on k-means clustering

A first positive observation is that none of the eras contains a gap in between its sea-
sons, guaranteeing a smooth transition from one era to the next. Interestingly enough,
this property of ”smoothness” remains true if the number of clusters k is increased to 4
(1980-1993, 1994-2005, 2006-2016 & 2017-2023) or 5 (1980-1989, 1990-1994, 1995-2005,
2006-2016 & 2017-2023). Nevertheless, we will stick to the 3 originally obtained eras for
the remainder of the analysis. Although the second era is visibly the longest according to
the results, it is important to note that this could alter based on how far back the seasons
are considered and due to the ongoing 3rd era. In order to analyse the different char-
acteristics of each cluster, one can take a look at the corresponding standardised radial
plots.
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Figure 20: Standardised radial plots of average profiles in each era

As proposed by Rocha da Silva & Rodrigues (2021)[12] (a good read for those interested
in deepening this topic), the three eras can be referred to as the ”Classic Era” (era 1),
the ”Transitional Era” (era 2) and the ”Modern Era” (era 3). In the Classic Era, the
2-point shot seemed to be a large part of every team’s playstyle, despite the 3-point line
having already been introduced. During this era, teams had above average stats in almost
every category apart from 3-point shooting and defensive rebounds. This could largely
be down to the relatively high pace of the game, leading to more possessions and more
opportunities to record certain stats. The Transitional Era seemed to present close to
average stats in most categories, compared to the other two eras. A clear change was
that teams started to rely more on 3-point shots, as it became a reliable resource to win
games. Meanwhile, the average pace tended to drop significantly, explaining why most of
the basic stats averages were lower than in the Classic Era. Lastly, the Modern Era was
captivated by the high number of 3-point attempts and makes, as well as points scored,
defensive rebounds and overall pace. According to the LASSO regressions by Rocha da
Silva & Rodrigues (2021)[12], in the Modern Era, the converted 2-point shots became a
negative factor to win games, while the converted 3-point shots became a positive factor.
Overall, one can notice clear differences between the eras: the Classic Era mainly focused
on close distance shots, the Transitional Era started the shooting transition from the rim
to the 3-point line and the Modern Era is characterised by an improved shot selection,
shifting from less efficient 2-point shots to more rewarding 3-point shots.

Finally, the Cluster Heterogeneity Index (CHI), measuring the variability within a clus-
ter, is given by the formula

CHIj =

∑p
i=1 s

2
ij

p
(24)

where

s2ij =

∑nj

h=1(xhi − µij)
2

nj − 1
(25)

is the estimated sample variance of the ith (i = 1, ..., p) variable Xi in the jth cluster of
size nj. Here, xhi is the value of the variable Xi for the h

th data point in cluster j and µij

is the mean of the variable Xi for all the data points in cluster j. The closer this value
is to 0, the better the clusterisation quality is. A general threshold can be fixed at 50%,
which may vary depending on the number of individual cases.

CHI1 = 0.2, CHI2 = 0.2, CHI3 = 0.13
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It seems that all three clusters have a relatively low CHI, leading us to believe that
the derived clusterisation is of satisfactory standard and that each cluster is more or less
homogeneous.

(Note: One could further analyse the differences between eras by conducting ANOVA
(Analysis of Variance) tests on variables from different seasons, to determine if their
means are significantly dissimilar.)

7 Key Factors influencing Player Salaries

Over the past few decades, the average player salary in the NBA has continuously risen.
This is largely due to external factors such as the inflation of the USD ($), as well as
the growing league and team revenue. Simultaneously, the so-called Salary Cap, the
league-wide salary limit that a team can offer to their players, has gone up accordingly.
Therefore, it may be interesting to normalise the data by considering the player salaries as
a percentage of the salary cap, when looking for the key factors that influence a player’s
salary. In particular, the analysis will be conducted on all NBA players from the seasons
1994-1995 to 2015-2016, using the following set of variables: position, minutes played,
points, assists, rebounds, steals, blocks, turnovers, personal fouls, PER, BPM, years of
experience & team wins. The core information of the used dataset is provided by John
Rosson (2019)[13]. Using multiple linear regression, the global aim is to understand which
underlying stats are valued the most by NBA teams upon negotiating contracts and how
these can help predict future salaries.

Figure 21: Salary cap & average salary from 1995-2016

Multiple linear regression is a well-known statistical modelling technique that is used to
model the relationship between multiple independent variables (i.e. predictors) X1, ..., Xn

and one dependent variable (i.e. response variable) Y . This relationship is expressed by
a linear equation of the following form:

Y = β0 + β1X1 + ...+ βnXn + ϵ (26)

where β0, ..., βn are the respective slope coefficients and ϵ is the model’s error term, which
expresses the part of Y that cannot be explained by the predictors X1, ..., Xn. As for
the quality of the modelling, it is often measured with tools such as the Coefficient of
Determination R2, representing the proportion of the variance in the dependent variable
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that is explained by the independent variables. Let y1, ..., yN be a sample ofN observations
of the dependent variable Y with mean ȳ and with corresponding predictions ŷ1, ..., ŷN .
Then we have

R2 = 1− RSS

TSS
(27)

where

RSS =
N∑
i=1

(yi − ŷi)
2 (28)

is the Residual Sum of Squares, and

TSS =
N∑
i=1

(yi − ȳ)2 (29)

is the Total Sum of Squares. R2 typically ranges from 0 to 1, with a higher value indicat-
ing a better fit of the model to the data. When the predicted model is a strictly worse
predictor than the mean, we have RSS > TSS, which leads to R2 taking a negative value.
In this case, the model is not suited for the given data.

After having collected additional information, such as the annual salary cap, and hav-
ing cleaned the dataset, an important step is to select the independent variables to be
included in the model. To do this, one can first compute the correlation matrix and
analyse the pairwise correlation of the variables with the help of a heat map. When
choosing the independent variables that should be included in the model, it is generally
a good idea to choose variables having a strong correlation with the dependent variable.
A positive correlation coefficient represents a positive relationship between the variables,
while a negative correlation coefficient indicates a negative relationship.

Figure 22: Heat map of correlation matrix

First of all, one can notice that two of the variables (Team wins & Position) have a correla-
tion coefficient close to 0 with the dependent variable Salary cap % (SC%), meaning that
there is little to no linear relationship between the variables. Hence, these variables will
be dropped for the remainder of the analysis. Next, one also needs to consider having a
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low multicollinearity between the independent variables, as this is a key assumption when
selecting them. Therefore, one can use the correlation matrix to compute the Variance In-
flation Factor (V IF ), which measures the multicollinearity between the predictors. More
specifically, the V IF determines to which extent the variance of a predicted regression
coefficient is increased due to multicollinearity in the model and should ideally be no
greater than 5 for an independent variable. Its formula is given by

V IFi =
1

1−R2
i

(30)

where R2
i is the obtained coefficient of determination by considering a linear regression

model with the ith independent variable taking the role of the dependent variable, while
all the other independent variables remain as predictors.

Figure 23: V IF values for each independent variable

Based on this table, the variable MP has the highest V IF value (≫ 5), indicating that
it is strongly correlated with the other predictors. In other words, considering it would
most likely not add any new information to the model. This is not surprising since a
player who plays more minutes tends to be more involved in the game, allowing him to
record greater values in each statline. Due to its high multicollinearity, the variable MP
is removed from the analysis. After the removal, the V IF for the remaining variables all
drop below 10, apart from the variable TOV (V IFTOV = 10.687). A brief look at the
correlation heat map helps us understand that its pairwise correlation with several pre-
dictors is relatively high, especially with PTS and AST. Therefore, TOV is also removed
as independent variable, finally leading to all considered V IF values dropping below 5.

The next step consists of fitting the model by using a regression analysis tool to opti-
mally estimate the regression coefficients for each independent variable. A commonly
used method is the Ordinary Least Squares (OLS) regression, whose goal is to minimise
the sum of the squared deviations. The R function lm provides an estimated model con-
taining the estimated coefficients, the standard errors, the t- and p-values, all of which
can be summarised in a table.
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Figure 24: Results of estimated model

The estimated coefficients describe the possible linear relationships between the indepen-
dent variables and the response variable. For example, keeping all the other predictors
constant, an increase of 1 unit in PTS would presumably lead to an increase of 8.904e-
05 (≈ 0.008904%) in the salary cap %. Overall, PER and Years of experience have the
largest estimated coefficients with 1.03e-03 and 5.80e-03 respectively. In addition, the
estimated coefficient of the intercept is 0.006114, meaning that the dependent variable
equals 0.006114 when all the independent variables are set to 0. Meanwhile, the stan-
dard error, the t- and p-values all measure the quality of the estimated coefficient. In
general, the p-value is the most commonly used out of the three, since a value below a
certain significance level (usually 0.05) reveals that a predictor is statistically significant
to forecast the response variable. In this case, all the independent variables are statis-
tically significant, apart from the variable BPM. Furthermore, the value R2 = 49.75%
confirms a relatively good fitting, as almost half of the dependent variable’s variance can
be explained by the estimated model. Finally, the obtained linear regression equation is
given by:

YSC% =6.11e-03 + 8.90e-05XPTS + 6.26e-05XAST + 9.16e-05XTRB − 2.67e-04XSTL

+ 2.92e-04XBLK − 3.04e-04XPF + 1.03e-03XPER + 6.03e-04XBPM

+ 5.80e-03XY oE + ϵ

(31)

In the case where a player’s values of the predictors are known, his future salary can be
predicted with the help of this equation and the corresponding annual salary cap.

8 Going further: Additional Approaches to Basket-

ball Analytics

This section consists of multiple advanced methods, allowing us to discover patterns in
data. Requiring a large number of modern-day stats, this analysis can primarily only be
done on games, teams and players from the 21st century. Generally speaking, these tools
are only some of the modern day techniques that are used by basketball analysts and
experts to understand the hidden mechanisms behind the data.

8.1 Shooting Density Estimation

When analysing a game, it can be of interest to measure the occurrence frequency of a
certain event, as proposed by Zuccolotto & Manisera (2020)[16]. For example, the shoot-
ing frequency in time and space can give teams and players key insights as to which types
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of shots are the most effective. Density Estimation Methods, such as histograms and
kernel (KDE), are tools that estimate the cumulative distribution function or probability
density function of a random variable. With the help of the R method densityplot and
play-by-play data of the games, the kernel density estimation of shots with respect to
the total time (total amount of seconds played), the play length (seconds in to the 24-
second shot clock) and the shot distance (distance from the rim in feet) can be computed
and plotted. In particular, the densityplot function uses the common Gaussian kernel
density estimation method, as well as a bandwidth, whose default value is simply the
standard deviation of the kernel. The kernel is a smooth weighting function that spreads
the influence of each data point across its neighborhood. Meanwhile, the bandwidth con-
trols the width of the kernel function and determines to which extent each data point
influences the density estimate. Thanks to the play-by-play data provided by Zuccolotto
& Manisera (2020)[16], we can consider an example of density estimation, looking at the
field goal density of the 2017-2018 regular season Golden State Warriors with respect to
the three previously mentioned variables.

Figure 25: Density estimation of GSW’ shooting performance in 2017-2018 with respect
to total time, play length & shot distance

Based on the plots of the estimated densities, the Warriors tend to shoot slightly more
field goals in the first half (52%) than in the second half (48%). While their shooting
percentages seem to be fairly consistent throughout the entire game (≈ 50%), the best
scorer on the team varies from one period to the next. Furthermore, they tend to shoot
relatively fast, with 26% of their shots coming within the first five seconds of the shot
clock, maintaining a high field goal percentage for these shots (53%). On the other hand,
they only rarely have to force shots near the end of the shot clock (8%), making an im-
pressive 43% of these shots nonetheless. In terms of the shot distance, the Warriors tend
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to mainly take two types of shots, either within 4 feet of the rim (30%) or from behind the
3-point line (34%). Their remarkable shooting percentages are 68% and 39% respectively,
with Kevin Durant being the best scorer from inside the 3-point line and Klay Thompson
being the best from behind the arc.

A further way to represent the spatial distribution of data is by using graphical tools,
such as density polygons, rasters and hexbins. A commonly used graph in basketball ana-
lytics is the so-called Shot Chart, illustrating the estimated spatial shot density according
to different zones on the court. Using the same data as before, one can consider several
types of shot charts for arguably the best shooter of all-time, Stephen Curry.

Figure 26: Spatial density estimation of Stephen Curry’s shooting performance in 2017-
2018

The three plotted shot charts all take the same data as input, while displaying the ob-
tained spatial density estimates slightly differently. Overall, one can notice that Curry
tends to take most of his shots either from the 3-point line or from very close range.
Moreover, the majority of his 3-point shots come from the top of the arc, with a slight
preference for his left-hand side.

8.2 High-pressure Shooting

Another interesting subject to analyse is the classification of shots according to a specific
game situation. In particular, this can provide us with information on which players are
the best at dealing with high-pressure conditions. In Zuccolotto & Manisera (2020)[16],
they studied the impact of high-pressure game situations on the shooting performance
of players by means of CART (Classification and Regression Trees), a popular decision
tree algorithm in machine learning. The first step of their study consisted of clearly
defining the different high-pressure game situations. Incorporating the suggestions of
several basketball experts, they came up with the following situations:

When the shot clock is going to expire, when the score difference with respect
to the opponent is small, when the team as a whole has performed poorly
during the match up to that particular moment in the game, when the player
who is shooting has missed his previous shot, and when the time left on the
clock is running out. (Zuccolotto & Manisera, 2020, p. 101)[16]

More specifically, the authors used CART to examine the influence of these high-pressure
conditions on a player’s scoring probability by considering all the joint associations be-
tween the variables. Based on the obtained resulting CART models, they could conclude
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that not all shots are alike, which led them to develop their own shooting performance
measure, focusing on the shot conditions. This new metric should supposedly value a
made shot more when the scoring probability is lower (e.g. near the end of the shot
clock). The authors introduced the following measure:

For each shot type T (2P: 2-point, 3P: 3-point, FT: free-throw), let JT be the
set of attempted shots of type T and xij the indicator assuming value 1 if the
jth shot of the ith player scored a basket and 0 otherwise. The new shooting
performance of player i for shot type T is given by

Pi(T ) = avj∈JT (xij − πij) (32)

where avj∈JT (·) denotes averaging over all of the shots of type T attempted by
player i and πij is the scoring probability assigned by the CART model to the
jth shot of the ith player, that is to a shot of the same type and attempted in
the same game situation as the jth shot of the ith player. For each shot, the
difference xij − πij can be used as a performance measure of the shot. In fact,
the difference is positive if the shot scored a basket and negative if it missed.
(Zuccolotto & Manisera, 2020, p. 106)[16]

The measure Pi can be either positive or negative and is ideally compared between players
with the help of a bubble plot, with the x-axis, y-axis and colour representing the Pi(2P ),
Pi(3P ) and Pi(FT ) respectively. In their analysis, the authors used data from the Olympic
Basketball Tournament Rio 2016, only considering the players having attempted over 15
shots of each type.

Figure 27: Bubble plot of players’ shooting performance values from Rio 2016. Source:[17]

The bubble plot reveals how players perform compared to the average, taking both the
shot type and game situation into consideration. The top right plane presents the players
shooting above average from both 2-points and 3-points, while the bottom left plane
presents the players shooting below average in both categories. Concurrently, the more
red a player’s bubble is, the better their free throw shooting is. An interesting feature of
this new measure, is that it highlights key differences between players having the same
standard shooting percentages. As mentioned by the authors, B. Bogdanovic and A.
Nocioni both have very similar 3-point field goal percentages (≈ 45%), however, according
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to the new metric, Nocioni shoots slightly better than Bogdanovic, based on the shot
conditions. Contrarily, the measure also identifies the players having different standard
shooting percentages, while sharing a similar value in the shooting performance measure.
As mentioned by the authors once again, N. Laprovittola and C. Anthony are evaluated
almost equally regarding 2-point shots, even though they have different 2-point field goal
percentages (36.8% & 38.5% respectively).

9 Conclusion

The primary goal of my work was to shed some light on some common NBA discussion
topics, based solely on statistics. For that, I used several well-known analytical methods,
such as Principal Component Analysis, Multidimensional Scaling, k-means clustering and
multiple linear regression.

After having logically developed my own player and team evaluation metrics (PPI &
TPI), the main focus was to determine the greatest player and the greatest single season
team of all-time. Overall, the analysis and metric values revealed that Michael Jordan
can be considered as the GOAT, while the dominant 2016-2017 Golden State Warriors
topped the charts in the team category.

Next, I attempted to identify and classify the key eras in NBA history, with the help of
k-means clustering. According to the obtained results, the NBA seasons from 1980-2023
can be grouped into three eras, all having slightly different characteristics: the Classic
Era (1980-1994), the Transitional Era (1995-2015) and the Modern Era (2016-2023).
By means of multiple linear regression, it turns out that all of the basic season stats, as
well as the PER and the experience of a player, are statistically significant and explain
approximately half of the variance, when it comes to determining the proportion of a
player’s salary with respect to the annual salary cap.

Finally, some advanced analytical methods, such as shooting density estimation and the
development of a true shooting performance measure, were presented, to give the reader
an idea of how modern-day teams and players can benefit from basketball analytics.

On a personal note, I was able to get a first insight into collecting, manipulating and
interpreting large sets of data, while doing research on a topic I thoroughly enjoy. Not
only could I apply my previous Sports and Statistics knowledge to the research, I also
learned several new data analysis techniques, such as PCA and MDS, which will undoubt-
edly be useful to me in the near future.

38



10 Appendix

10.1 Calculating PER

John Hollinger’s Player Efficiency Rating (PER) needs to be calculated in two steps,
according to (Calculating PER, n.d.)[1]. First, we determine the uPER (unadjusted PER),
using the following formula:

uPER =
1

MP

[
3FG+

2

3
AST +

(
2− factor · team AST

team FG

)
· FG

+ FT · 0.5 ·
(
1 +

(
1− team AST

team FG

)
+

2

3
· team AST

team FG

)
− V OP · TO − V OP ·DREB% · (FGA− FG)

− 0.44V OP · (0.44 + 0.56DREB%) · (FTA− FT )

+ V OP · (1−DREB%) · (REB −OREB)

+ V OP ·DREB% · (OREB +BLK) + V OP · STL

− PF ·
( league FT

league PF
− 0.44

league FTA

league PF
· V OP

)]
(33)

where:

• MP stands for minutes played

• FT(A) stands for free throws made (attempted)

• factor = 2
3
− 1

4
league AST ·league FT

(league FG)2

• V OP = league PTS
league FGA−league OREB+league TO+0.44·league FTA

• DREB% = league REB−league OREB
league REB

Hollinger chose the different statistics included in PER according to their ability to de-
scribe a player’s impact on the game. Considering the determination of the respective
weights, Hollinger primarily used a regression analysis to deduce the relative importance
of each statistical category, while also taking his own judgment and experience as a bas-
ketball analyst into account.

Secondly, the obtained uPER needs to consider the pace of the team, as well as the
league. Therefore, the uPER is standardised, giving us the wanted PER value:

PER = 15 · league Pace · uPER

team Pace · league uPER
(34)

Calculating the PER for seasons before 1979-1980 can be problematic, since the NBA
hadn’t introduced the 3-point shot and wasn’t tracking some of the basic stats before
then. However, by simply disregarding these statistics, one can still come up with a
relatively close approximation to what the actual PER value would have been for a player
playing prior to 1979-1980.
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10.2 Calculating BPM

Similar to the PER, Daniel Myers’ Box Plus-Minus (BPM) is calculated in several steps,
by adding 9 different terms. Each individual term takes a different basic statistic into
account, allowing us to cover most of the box score stats. Here are the formulas for these
particular terms, according to Cappe (2020)[2]:

rBPM1 = 0.123391 · MP

GP + 2
(35)

rBPM2 = 0.119597 ·OREB% (36)

rBPM3 = −0.151287 ·DREB% (37)

rBPM4 = 1.255644 · STL% (38)

rBPM5 = 0.531838 ·BLK% (39)

rBPM6 = −0.305868 · AST% (40)

rBPM7 = 0.921292 · USG% · TO% (41)

rBPM8 =0.711217 · USG% · (1− TO%) · [2 · (TS%− team TS%)

+ 0.017022 · AST%+ 0.297639 · (3PTS%− league 3PTS%)

− 0.213485]

(42)

rBPM9 = 0.72593 ·
√
AST% ·REB% (43)

where:

• MP & GP stand for minutes & games played respectively

• USG% stands for Usage percentage and is calculated in the following way:

USG% =
team MP · (FGA+ 0.44FTA+ TO)

5MP · (team FGA+ 0.44 · team FTA+ team TO)

• TS% stands for True Shooting percentage and is calculated in the following way:

TS% =
50PTS

FGA+ 0.44FTA

By adding all of these terms together, we get the so-called ”raw” BPM:

rBPM =
9∑

i=1

rBPMi (44)

Once again, this value needs to be normalised to each team individually. Therefore, the
final BPM value is given by considering a corrective term, namely the team adjusted
coefficient:

BPM = rBPM +
1.2 · team NRtg − 5 · rBPM · MP

team MP

5
(45)

As already explained before, this value can be either positive or negative. Myers devel-
oped the majority of the formulas by repetitively testing different linear combinations of
advanced statistics, in order to find the combination that led to the smallest error in his
regression analysis. Further details can be found in the article About Box Plus/Minus
(BPM) [9], written by the developer Myers himself.
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10.3 Python Code

First of all, this is the Python code for the PCA algorithm, that was primarily used for
the development of the self-invented metrics:

1 import pandas as pd

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from sklearn.preprocessing import StandardScaler

5 from sklearn.decomposition import PCA

6

7 # Load data from CSV file

8 data = pd.read_csv("Top 75 players advanced metrics.csv")

9

10 # Replace the N/A values by column average

11 values = {"PER": data["PER"].mean(), "BPM": data["BPM"].mean(), "NRtg":

data["NRtg"].mean()}

12 data = data.fillna(value=values)

13

14 # Standardize the data

15 scaler = StandardScaler ()

16 data_std = scaler.fit_transform(data.drop(’Player Name’, axis =1))

17

18 # Compute covariance matrix of data

19 print(np.cov(np.transpose(data_std)))

20

21 # Perform the other steps of PCA

22 pca = PCA()

23 pca.fit(data_std)

24

25 # Print principal components

26 print(pca.components_)

27

28 # Get the explained variance ratios

29 variance_ratios = pca.explained_variance_ratio_

30 print(variance_ratios)

31

32 # Plot scree plot

33 plt.plot(np.cumsum(pca.explained_variance_ratio_))

34 plt.xlabel(’# of Components ’)

35 plt.ylabel(’% of Variance ’)

36 plt.show()

37

38 # Extract the first component

39 first_component = pca.components_ [0]

40

41 # Create a DataFrame from the first component

42 component_df = pd.DataFrame(first_component , index=data.columns [1:],

columns =[’PC1’])

43

44 # Print the DataFrame

45 print(component_df)

Listing 1: PCA code

The following code can be used to execute the MDS algorithm without using the R method
MDSmap:

1 from sklearn.manifold import MDS

2 from sklearn.preprocessing import StandardScaler
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3 from sklearn.metrics import pairwise_distances

4 import pandas as pd

5 import matplotlib.pyplot as plt

6

7 # Load data from Excel file and select desired columns

8 df = pd.read_excel("Top 75 players career regular season averages.xlsx",

9 usecols =["trebPerGame", "astPerGame", "stlPerGame", "

blkPerGame", "ptsPerGame"])

10

11 # Replace missing values with column mean

12 column_mean = df.mean()

13 df.fillna(column_mean , inplace=True)

14

15 # Compute pairwise Euclidean distances between data points

16 distances = pairwise_distances(StandardScaler ().fit_transform(df),

metric=’euclidean ’)

17

18 # Instantiate MDS object with desired parameters

19 mds = MDS(n_components =2, dissimilarity="precomputed", random_state =42)

20

21 # Fit MDS model to distance matrix

22 fitting = mds.fit_transform(distances)

23

24 # Plot final fitting

25 plt.scatter(fitting[:, 0], fitting[:, 1])

26 plt.title("MDS Plot")

27 plt.show()

Listing 2: MDS code

10.4 Datasets

As I was unable to include the full details of every single used dataset, I have decided to
upload all of them to an online folder, which is linked down below:

https://drive.google.com/drive/folders/14GS7B4kyhkg4h0C94rEmXGfqBC3x_LOZ?usp=

share_link
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Glossary

2FG 2-point Field Goals made
2P% 2-point Field Goal Percentage
3FG 3-point Field Goals made
3P% 3-point Field Goal Percentage

AST Assists

BD Between Deviance
BLK Blocks
BPM Box Plus-Minus

CART Classification and Regression Trees
CHI Chicago Bulls
CHI Cluster Heterogeneity Index

DREB Defensive Rebounds
DRtg Defensive Rating

eFG% Effective Field Goal Percentage

FF Four Factors
FG Field Goals made
FG% Field Goal Percentage
FGA Field Goals attempted
FT Free Throws made
FT% Free Throw Percentage
FTA Free Throws attempted

GOAT Greatest Of All-Time
GP Games Played
GSW Golden State Warriors

KDE Kernel Density Estimation

LAL Los Angeles Lakers
LASSO Least Absolute Shrinkage & Selec-

tion Operator

MDS Multidimensional Scaling

MIN Minutes
MP Minutes Played
MVP Most Valuable Player

NBA National Basketball Association
NRtg Net Rating

OLS Ordinary Least Squares
OREB Offensive Rebounds
ORtg Offensive Rating

PCA Principal Component Analysis
PER Player Efficiency Rating
PF Personal Fouls
POSS Possessions
PPI Player Performance Index
PTS Points

rBPM Raw Box Plus-Minus
REB Rebounds
RSS Residual Sum of Squares

SC% Salary Cap Percentage
STL Steals

TD Total Deviance
TO Turnovers
TPI Team Performance Index
TS% True Shooting Percentage
TSS Total Sum of Squares

uPER Unadjusted Player Efficiency Rating
USG% Usage Percentage

VC Variation Coefficient
VIF Variance Inflation Factor
VOP Value of Possession

WVC Weighted Variation Coefficient
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