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Statistical Methods and Tools for Football Analytics

by Dr. Mattia CEFIS

Machine learning and digitization tools are exponentially increasing in these last
years and their applications are reflected in different areas of our life: in particu-
lar, this thesis aims to focus on football (i.e. soccer for Americans), the most prac-
tised sport in the world. Due to needing of professional teams, analytics tools in
football are becoming a crucial point, in order to help technical staff, scouting and
clubs management in policy evaluation and to optimize strategic decisions; for this
reason, different statistical applications have been developed, one for each chapter,
corresponding to published or submitted scientific articles. In the first part are pre-
sented the main activities I attended during my PhD, then the first chapter is ded-
icated to literature review, by an original bibliometric analysis relying football ana-
lytics development in the decade 2010-2020. The following chapter is designated for
in-depth the Partial Least Squares Structural Equation Modeling (PLS-SEM) frame-
work, in order to study and create some original composite indicators for players
performance using data provided by Electronic Arts (EA) experts and available on
the Kaggle data science platform; in particular, a Third-Order PLS-PM approach was
adopted on the sofifa Key Performance Indices, in order to compute a composite indi-
cator differentiated by role. In the next chapter the PLS-SEM model has been refined
and validated, applying both Confirmatory Tetrad Analysis (CTA) and Confirma-
tory Composite Analysis (CCA), using EA sofifa data relying the most recent football
season (2021/2022); the final results underline how some sub-areas of performance
have different significance weights depending on the player’s role; as concurrent
and predictive analysis, the new Player Indicator (PI) overall was compared with
a benchmark (the EA overall) and with some performance quality proxies, such as
players’ market value and wage, showing interesting and consistent relations. At
this point, these original composite indicators have been introduced as regressors
in the last chapter for improving in terms of prediction performance the expected
goal (xG) model; it is one emerging tool in the field of football analytics, that aims
to predict goal and measure the quality of each shot, by applying a supervised ma-
chine learning approach (logit model) on different scenarios for sample balanced
techniques. In particular, some performance composite indicators obtained by the
PLS-SEM and some original tracking variables are significant for the classification
model, contributing to increase the goal prediction probability, compared with a
benchmark.

HTTPS://WWW.UNIBS.IT/
https://aem.unibs.it/
https://www.unibs.it/dipartimenti/economia-e-management
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Italian abstract - Gli strumenti di digitalizzazione e di machine learning hanno avuto
una crescita esponenziale nel corso degli ultimi anni e tutto ciò ha riguardato di riflesso i
più svariati settori della nostra vita: in particolar modo, questa tesi ha l’obiettivo di focaliz-
zarsi sulla sport analytics, in particolare sul calcio, lo sport più praticato al mondo. A causa
della crescente necessità dei club professionistici, gli strumenti analitici nel calcio stanno di-
ventando uno snodo cruciale per aiutare gli staff tecnici, le aree scouting e i management
nell’ottimizzare e nel prendere decisioni; per questa ragione, in questa tesi sono state svilup-
pate diverse applicazioni statistiche, una per ogni capitolo, ognuna corrispondente ad un arti-
colo scientifico pubblicato o in revisione da parte di una rivista scientifica. Nell’introduzione
della tesi sono elencate le principali attività svolte durante il periodo di dottorato, seguite dal
primo capitolo dedicato alla revisione della letteratura, effettuato in forma analitica grazie ad
un originale analisi bibliometrica sugli ultimi 10 anni di produzione scientifica.

Il secondo capitolo è dedicato ad un approfondimento metodologico sul Partial Least
Squares Structural Equation Modeling (PLS-SEM), metodologia statistica utilizzata per la
creazione di indicatori compositi volti ad analizzare la performance dei giocatori, tramite
l’utilizzo di dati forniti dagli esperti di Electronic Arts (EA) e disponibili sulla piattaforma
di data science Kaggle; nella seconda parte del capitolo è presente l’applicazione sviluppata,
in particolare un modello gerarchico del terzo ordine utilizzando i Key Performance Indices
di sofifa per calcolare un indicatore composito differenziato per ogni ruolo.

Nel terzo capitolo il modello sviluppato nel capitolo precedente è stato rifinito e validato
per ogni ruolo, applicando una Confirmatory Tetrad Analysis (CTA) e una Confirmatory
Composite Analysis (CCA), utilizzando i dati relativi ai più recenti campionati (stagione
2021/2022); i risultati ottenuti sottolineano come le diverse aree e sottoaree di performance
hanno diversi pesi e valori a seconda del ruolo del giocatore. Infine, con lo scopo di valutare
la validità predittiva del modello, il nuovo indicatore composito (PI) overall è stato con-
frontato con un benchmark (EA overall) e con delle variabili proxy come il valore di mercato
e l’ingaggio dei giocatori, ottenendo dei risultati interessanti e significativi.

A questo punto, nell’ultimo capitolo gli indicatori compositi sviluppati in precedenza
sono stati introdotti come regressori nel modello di expected goal (xG), con lo scopo di miglio-
rarne l’accuratezza predittiva. Il modello xG è infatti uno dei modelli emergenti nel mondo
della football analytics e ha lo scopo di prevedere i goal e misurarne la qualità. Per fare questo
è stato applicato un modello logistico classico ed un modello logistico aggiustato su diversi
scenari per campioni bilanciati. Nella fattispece, alcuni indicatori compositi e altri nuovi
regressori (variabili di tracking) sono risultati significativi per il modello di classificazione,
contribuendo a migliorare l’accuratezza nella predizione dei goal, confrontandolo con un
benchmark.
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1

Introduction

Nowadays, football analytics is a growing theme for researchers and teams both,
encouraging different areas of study: from players’ market estimation to perfor-
mance evaluation, from injures prevention to data-tracking analysis, all thanks a
data-driven approach. Like we will see in the following chapters, data and statistics
could be very precious for helping policy makers to take some strategic decisions.
In this thesis it has shown an initial setup thanks a literature review in Chapter 1, to
give an idea about the state of the art about the last decade, then the aim is to build
some composite performance indicators thanks an innovative statistical approach:
the Partial Least Squares Structural Equation Modeling (PLS-SEM, respectively in
Chapter 2 and Chapter 3), in order to evaluate and split players’ performance in dif-
ferent sub-areas, for helping technical and scouting staff of a soccer team. These
composite indicators will be used for improving in terms of prediction accuracy
the well-known Understat (www.understat.com) expected-goal model, integrating
it with some players’ tracking data too (Chapter 4). Finally, the conclusion of the
thesis is provided.

Thanks to this introduction the goal is to give a clearer idea about the logical path
of this thesis, also underlining my growing way, with my contributions and related
conferences or courses I attended during my PhD experience.

My contributions and attended conferences

We give below an overview of the contributions of this PhD thesis in terms of pub-
lished or accepted peer-reviewed papers, in international conferences or scientific
journals. The list is in chronological order, and for each paper there is a brief de-
scription.

• Cefis, M. [31], "Football Analytics: performance analysis differentiate by role",
Book of abstracts of DSSR conference, 2020.

This was a speech contribution at the DSSR (Data Science Social Research) con-
ference of December 2020, in the session named "Sport analytics on the pitch".
In this work I focused on data visualization about strategic key performance
indicators for football players, in particular underling the different statistical
distribution among roles’ key performance indices.

• Football Data Analyst course (www.wylab.net): I attended this course from
march to may 2021, organised from Wylab. This course had a data-driven ap-
proach to football, with some interesting topics useful for the research path:
data visualization, the expected goal model, the playrank algorithm [102], key
performance indices about teams and players. I made as output of this course
a project work with others classmates, thanks to players’ event data and using
some machine learning techniques by Python, with title: "The analytical scout-
ing: data and insight to detect the target player. The case-study of Bologna
F.C."

www.understat.com
www.wylab.net


2 List of Tables

• Cefis, M. and Carpita, M. [30]: "Football analytics: a Higher-Order PLS-SEM
approach to evaluate players’ performance", Book of short papers SIS 2021.

This was a contribution talk at the 50th SIS (Italian Statistical Society) confer-
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Chapter 1

State of the art

To make this thesis more self-contained, this chapter presents an overview of the lit-
erature about football analytics, thanks to an innovative approach: the Bibliometrix
R package [2]. This interesting tool let us to optimise the stages of data-analysis
and data-visualization both, about literature, managing data directly from the fa-
mous bibliographic database SCOPUS1. After a brief introduction (Sec. 1.1), we will
present the data management phase (Sec. 1.2), followed from a results analysis and
a discussion about the more significant papers, respectively in Sec. 1.3 and Sec. 1.4.
Finally, a conclusion about this chapter is given in Sec. 1.5.

More specific concepts, are described in the corresponding chapters throughout
the thesis.

1.1 Introduction

Nowadays, we can consider football clubs as real firms, while until some years ago
we were in the so-called patronage era. Because of this, now the aim of football clubs
is to optimize their own financial statements, in order to avoid any penalty from the
maximum football authority (for example, UEFA2 for Europe clubs). As summary,
the main earnings for a football club [19] derive from:

• Pay TV

• Stadium tickets and official merchandising

• Sponsors

• Players’ transfer market

With regard to this, it is logical to affirm that a successful team, with a good game-
system and which often plays international competitions (for example, UEFA Cham-
pions League) causes a virtuous circle ([19], see also Fig. 1.1) : new sponsors, fans,
UEFA bonus and increasing in the players’ value.

FIGURE 1.1: Virtuous circle in football world

1www.scopus.com
2www.uefa.com

www.scopus.com
www.uefa.com
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So, we can say that all this virtuous circle is strongly influenced from sports re-
sults; for this reason, for a football club is extremely important to optimize them. In
this last decade, for many sports and also for football is developing a digital revolu-
tion, where the crucial theme is: how to optimize players and team performance, in
order to reach positive results on the pitch. Many teams and researchers are trying
to answer this question.

1.1.1 Previous works and guideline

Until now, bibliometric reviews on sports have been focused on different topics but
not directly on football analytics: for example there is a bibliometric analysis on
sports science [129], some others focused on technology of the sport [5], until the
more recently focalized on the role of social media in sports [93]. So, following the
introduction made in the previous paragraph and in order to provide a guide for
football analysts and data scientists, our goal is to propose an original overview of
the literature about football analytics, thanks to an innovative approach: the Bib-
liometrix R package [2]. This interesting tool let us to automate the stages of data-
analysis and data-visualization both, about literature, managing data directly from
the famous bibliographic database SCOPUS. As previous step we tried to take in
consideration also another famous database (i.e. Web of Science), but merging dif-
ferent databases is one of the most challenging topics of bibliometrics literature: in
fact SCOPUS and Web of Science have very different records and many metadata,
such as authors’ names, affiliations, and references, that are stored with not compat-
ible formats. Furthermore, we noticed that our query (Sec. 1.2) applied on SCOPUS
produced 215 documents as output, while from Web of Science only 73, of which
67 already found in the SCOPUS database; for these reasons we decided to adopted
just documents from SCOPUS.

1.2 Data extraction and preparation

As disclosed at the beginning of this chapter, data were extracted from SCOPUS. The
goal was to collect all documents about football or soccer analytics (1.1), searching
these words in the title, abstract and keywords of each article: before the year 2010
we observed that scientific production produced maximum one article per year, and
as consequence the decision to focus just on the last ten years (decade 2010-2020,
with more significant production); furthermore, we kept in consideration only doc-
uments in English language. This query ran on July, the 26th of 2021.

(Football or Soccer) and analytics (1.1)

not
(Rugby or Cricket or Hockey

or American Football
or Australian Football)

(1.2)

After a first review, we noticed that in the output there were included some bias
articles (for example, about American or Australian football, or other sports): for
this reason, in order to automate the extraction, we attached below (1.1) an extra part
(1.2). By (1.2) we could exclude noisy documents from our research, then the dataset
was converted (thanks a special function provided by the Bibliometrix R package)
into a data-frame, with cases corresponding to articles and variables to field tags.
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In the final dataset we obtained a total of 215 documents over the last decade. It
is not a high number, but we must take in mind that soccer is one of the last sports
where analytics achieved: in practise, as we will see in Sec. 1.3, football analytics
revolution is on the cutting edge just from the last years. Before beginning the bib-
liometric analysis, we adjusted by hand some typos in the keywords and in the au-
thors’ names from the dataset, in order to avoid redundancy and misunderstanding
in the results.

1.3 Results and analysis

In this paragraph we will analyze results of our bibliometric analysis focusing on
different aspects: in Sec. 1.3.1 we will see an overview about the scientific production
in this last decade, while in Sec. 1.3.2 we will show some statistics about the authors,
in Sec. 1.3.3 we will focus on the keywords, in Sec. 1.3.4 we will propose an in-depth
analysis about the most productive countries and universities; eventually, some in-
depth graphs are shown in Sec. 1.3.5.

1.3.1 Overview results

As said before, this analysis was performed by the Bibliometrix package of R; for first,
here are shown some general results, in order to understand how the bibliometric
dataset is composed and the documents production trend over the last decade. In
Tab. 1.1 we can see a preliminary classification of the documents: it’s clear the preva-
lence of conference papers and articles.

TABLE 1.1: Documents classification

Document types Nb. of docs

Article 78
Book chapter 2
Conference paper 113
Conference review 11
Data paper 1
Editorial 3
Review 7

Total 215

In order to give an overview of the most relevant sources, considering all docu-
ments listed in Tab. 1.1, the plot in Fig. 1.2 is presented: the most relevant sources
(i.e. with more than 15 documents) are the Journal of Lecture Notes in Computer
Sciences, the CEUR workshop proceedings and the International Journal of Sports
Science and Coaching.
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FIGURE 1.2: The most relevant sources in football or soccer analytics

In Fig. 1.3 instead we can see the time-series of documents production over the
last decade: this evolution shows us a significant growing in the football analytics
production, with a peak in 2019 and a stabilization in 2020.

FIGURE 1.3: Annual scientific production

All this let us to underline how soccer analytics is an emerging and attractive
topic in the research world.

1.3.2 Authors analysis

In this paragraph we underline the most active authors; in Tab. 1.2 is suggested their
ranking by the well-known dominance factor: it is a ratio indicating the fraction of
multi-authored articles in which a scholar appears as the first author. Consequently,
an index near to 1 indicates very high dominance (i.e. in this table are considered
authors with dominance factor greater than 0.10).
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TABLE 1.2: Authors’ ranking by dominance factor

Ranking Name Dominance factor

1 Stein M. 0.73
2 Bransen L. 0.50
3 Pappalardo L. 0.50
4 Fernandez J. 0.25
5 Lucey P. 0.20
6 Stensland H. 0.20
7 Cintia P. 0.17
8 Davis J. 0.14
9 Halvorsen P. 0.14
10 Janetzko H. 0.13
11 Van H. J. 0.11

Now, here below (Fig. 1.4) we propose an interesting plot that take in considera-
tion not only the volume of the authors’ production, but also the number of citations
per year over the last decade: for this reason there is not perfect correspondence
between Tab. 1.2 and Fig. 1.4 authors. In addition, take in consideration that the
diameter of circles is proportional to the number of published articles, while their
darkness is proportional to the total number of citations received per year.

FIGURE 1.4: Top-Authors’ production over the years

From Fig. 1.4 we can emphasize that activity of the most productive and cited
authors is concentrated in the last five years, except for Halvorsen and Johansen. For
example Cintia (University of Pisa -Italy) had an increasing of his production and
obtained more than 10 citations in 2019, whereas Van Haaren (University of Leuven
-Belgium-) contributed with more than 5 articles and received 15 citations in the
last three years; remarkable also the contribution offered by Schreck (University of
Graz -Austria-) and Stein (University of Konstanz -Germany-, with also the highest
dominance factor, see Tab. 1.2) between 2015 and 2019 (more than 10 articles and 20
citations received for each one).
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1.3.3 Keywords analysis

In this paragraph the aim is to investigate about research topics, show what are the
most relevant keywords used from authors and their connection thanks to different
plots [45]. As preliminary analysis, in Fig. 1.5 are shown the most used keywords
from the authors, thanks a word cloud plot (i.e. the words size is proportional to
their frequency). It is interesting to notice how, excepting the keywords used in
the initial query (i.e. football, soccer and analytics, that we expected in this result),
there are also ”sports” (the most used one) and typical analytics tools such as ”data
mining”, ”learning systems”, ”visualization”, ”artificial intelligence” and ”machine
learning”.

FIGURE 1.5: The most used keywords from authors

For the next, Bibliometrix allows using the conceptualStructure function to per-
form multiple correspondence analysis to draw a conceptual structure of the field
and K-means clustering to identify clusters of documents that express common con-
cepts, all summarised by a network plot (Fig. 1.6); this graphic let us to explain co-
occurrence, where keywords and rectangles size are proportional to the production,
while thickness of ties to the strength of co-occurrence. Different colours represent
clusters, created from a K-means clustering procedure, to identify groups of doc-
uments that express common concepts [2]. In particular, co-word analysis aims to
map the conceptual structure of a framework using the word co-occurrences (i.e. in
this case the keywords) in a bibliographic collection.
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FIGURE 1.6: Keywords co-occurrence network

From Fig. 1.6 we can highlight how the red cluster is the most representative
(i.e. 11 keywords), with focus on technical tools (i.e., machine learning, data mining,
forecasting, artificial intelligence, player analysis and prediction) while the blue one
is focalized on visualization tools and the green one on more general topics such as
big data and deep learning.

Now, in order to represent co-occurrences network in a simpler view (i.e. a 2-
dimensions plot), we can see the thematic map (Fig. 1.7; for this plot we must take
in consideration that the words used in the initial query (i.e. football and soccer)
have been excluded, in order to have a clearer interpretation. As comment, this
graphic lets us to understand:

• In the top-right quadrant (high density and centrality) we can see the motor
themes.

• In the bottom-right quadrant (high density and low centrality) there are the
basic themes.

• In the top-left quadrant (low density and high centrality) we find niche themes.

• In the bottom-left quadrant (low density and low centrality) there are emerging
or discovering themes.

Take in mind that circle size is proportional to the cluster word (i.e. in this case
keywords) occurrences.
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FIGURE 1.7: The thematic plot

From Fig. 1.7 we see how technical tools are the motor, they are often applied for
basic themes (i.e., player, team performance and data mining), while niche themes
are mainly video recording and cameras; finally, considerable emerging themes are
spatio-temporal (also called as data tracking analysis), that is strictly related with
video recording and cameras themes. Also expert knowledge is a crucial emerging
theme, since it could be very useful in comparison with analytic results.

As insight, we analyse in Fig. 1.8 the top-five keywords evolution over the last
decade. It is interesting since we can see the topics trend applied into football ana-
lytics research.

FIGURE 1.8: Keywords evolution over the ten years

It’s correct to highlight that in Fig. 1.8 circle and brightness are proportional
to the number of contributes. We emphasize the increasing of employment for these
keywords, moreover until the year 2016, then a little decreasing and a new increasing
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in the last two years: the most employed keywords are machine learning and data
mining.

1.3.4 Countries analysis

Now, in this section attention is relied on countries analysis, in order to discover
what are the most productive ones and the network of universities collaboration.
Notice that in Fig. 1.9 Multiple Country Publications (MCP) indicates, for each
country, the number of documents in which there is at least one co-author from a
different country and so it measures the international collaboration intensity of a
country; instead, Single Country Publications (SCP) index measures the number of
documents in which author and co-authors are from the same country. We can see
how Germany, USA and Italy are the most productive countries, with an interest-
ing difference: while for Germany and USA a part of their production derive from
collaboration with authors from other countries, Italy do not contribute with any-
one. Austria, Belgium and China shows a higher rate of collaboration with other
countries (MCP) than their own SCP.

FIGURE 1.9: The most productive countries

In order to have a clearer idea than before about countries collaboration and
their rate of production we can see a summary plot in Fig. 1.10, the country col-
laboration map. Thanks this graphic, the darkness of each country is proportional
to each own production (i.e. grey states have no production), while lines thickness
among countries is proportional to their collaboration rate. This plot emphasize the
relevant relationship between USA and Australia (i.e. the strongest one), and some
others intercontinental relations respectively among centre Europe and Brazil, Spain
and Japan. Since football analytics is an emerging theme, there are many countries
with zero or very poor relations, for example Canada, Argentina, Italy, north Europe,
middle East and India. It could be proficient to encourage a more global cooperation
for the next years.
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FIGURE 1.10: Country collaboration map

In the following we present the research groups collaboration network: we must
keep in mind the guidelines explained in the Sec. 1.3.3. Furthermore, we show just
networks with at least two research groups involved in.

FIGURE 1.11: Research collaboration network

We can see some clear clusters, where the red, green, brown and purple are the
most representative ones (i.e. clusters with more than two research groups linked):

• Red cluster is a European group: it is composed from Dutch, Austrian and
Switzerland universities.

• The green is an intercontinental cluster (i.e. research groups from USA and
Australia).

• Brown cluster is another intercontinental group among China and Norway.
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• Purple cluster is an example of single country group: here we find only Italian
research institutes.

Each one of the remaining little clusters is composed mainly from strictly continental
research groups or from single group.

1.3.5 In-depth analysis

In this final paragraph, we propose an in-depth analysis thanks two interesting
graphs: in Fig. 1.12 we can see a three-field plot [45, 2], where there are linked
authors, keywords and sources, taking in consideration only the articles; in Fig. 1.13
instead we can see thematic evolution between first and last five years of the decade,
with focus just on conferences.

FIGURE 1.12: Three-fields articles plot: connection between authors,
keywords and sources

In Fig. 1.12 we can see top authors-keywords-sources linkage: note that the
height of rectangles is proportional to the number of documents produced. No-
tice that the best source for football analytics article is the International Journal of
Sport Science and Coaching while data visualization and performance are the most
relevant keywords.

In the last plot (Fig. 1.13) we can see keywords thematic evolution, where height
of rectangles is proportional to the number of documents produced.

FIGURE 1.13: Thematic conference trend over the last ten years
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We can explain the graphic, for example, in this way: conferences focused on
data mining in the first five years, in the last half of the decade (2016-2020) moved
respectively to behavioural research and machine learning topics. In addition to
this, it is interesting to underline the recently growing of data visualization topic
conferences (higher rectangle in the last five years than before).

1.4 Discussion

As viewed until now, we can say that football analytics is an increasing topic in
sports research; in particular, the most interconnection keywords used by authors
bright us to sum up three crucial theme for football analytics:

• Technical keywords and tools, where the recurring ones are data mining, machine
learning and artificial intelligence, tools nowadays applied in many branch of
our life.

• Data visualization, because presentation of results is fundamental in every sec-
tor, and also football does not do exception; for instance, it is crucial to show
results in the simplest and incisive way to the coaches and technical staff.

• Performance is the core of each analysis, in fact nowadays it is crucial for a
football team to be able optimizing it.

Since Soccer analytics is an emerging topic, there aren’t too much collaboration be-
tween research groups yet. For example Italy has productions just in its own coun-
try; the main groups are located within continent, except some sporadic case (for
example USA and Australia, China and Norway).

Here below are presented, as insights, three relevant articles, produced from au-
thors with the highest dominance factor (see Tab. 1.2):

• Stein et al. [124]: their work, result from a collaboration of different research
groups (from Germany, Portugal, Austria and Switzerland), has its own focus
on movement and visual analysis on soccer. They suggest a tool that covers the
automatic detection of region-based faulty movement behaviour, as well as the
automatic suggestion of possible improved alternative movements. They com-
pare their work with experts knowledge, with an interesting result: an agree
index of 83%. So, we can say that their approach could effectively supports
analysts and coaches investigating matches. This contribution was published
on the Journal of Sports Sciences.

• Pappalardo et al. [102]: this is an example of single-country work, in fact it
is produced just from Italian research groups. The aim of this work is to cre-
ate a sort of synthetic index in order to evaluate objectively football players
performance, thanks some event-match data and machine learning/big data
techniques. The final goal is to support teams in scouting, and so to evaluate
players impartially. This article was published on the ACM Transactions on
Intelligent Systems and Technology.

• Bransen and Van Haaren [16]: these Dutchmen authors, thanks artificial intel-
ligence and learning systems, propose a novel approach to measure players’
on-the-ball contributions from passes during games. Their method measures
the expected impact of each pass on the scoreline. This document was pub-
lished on the 5th Workshop on Machine Learning and Data Mining for Sports
Analytics.
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1.5 Chapter conclusion

As summary, we have seen the important growing of football analytics topics over
the last ten years, although it is a niche theme. We have shown how the main goal for
researchers and football teams is to support policy-evaluation, thanks the more re-
cent techniques of machine learning and artificial intelligence. Furthermore, another
relevant topic is data visualization, in order to show statistic results in the simplest
and efficient way to the people without an analytics background. It has been illus-
trated how this topic has not involved an intercontinental collaboration yet, except
some sporadic cases.

We have written this chapter with the goal to guide readers in this new world of
football analytics, to show the relevance it could have for teams and to emphasize
the role of analytical tools. The final goal is to guide researchers and practitioners in
this new frontier of football research, highlighting the importance of this data-driven
revolution.

The direction is traced, we have seen what already exist, but since this is a
"young" theme, there are also many emerging topics to improve and investigate.
Eventually, it could be interesting to encourage an exchange between researchers
and teams’ experts, in order to create a bridge with the club needs: experts and
statisticians collaboration could be the future for football. In the following chapters,
some original applications for football analytics will be presented.
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Chapter 2

The PLS-SEM approach

The latest developments in sports research, especially in football, are more and more
oriented on a data-driven approach [25]. Players’ performance evaluation is becom-
ing a strategic key for football coaches and for the management of a football team; for
this reason, in this chapter we will propose a very interesting tool, already known in
the psychometric world, but at the same time innovative for the sport research field:
the PLS-SEM (e.g. Partial least squares Structural Equation Modeling, called also
PLS-PM, as Path Modeling), for evaluating and measuring players’ latent perfor-
mance by some composite indicators. In particular, this chapter will be structured
in the following way: the first part (Sec. 2.1) is focalized on the methodological
framework, whereas in Sec. 2.2 is presented an exploratory application. Eventually,
a conclusion of the chapter is given in Sec. 2.3.

2.1 Methodology

In order to present an overview of this section, we can start speaking about the big
family of indicators which belongs PLS-SEM: the composites. Composite indicators
had an exponential growing in the last 20 years, used to evaluates and supervise
issues in a wide range of topics, for example: economy, society, industry, health. As
written in the Handbook of Composites ([48]), a composite is formed when individ-
ual indicators are compiled into a single index on the basis of an underlying model,
in fact it is used to measure multidimensional concepts; so, its purpose is to summa-
rize a complex phenomenon and monitoring it over the time, in order to help policy
makers to take strategic decisions. Due to its easier interpretation than a battery of
many separate indicators, a composite also tends to facilitate communication with
citizens and media, promoting accountability. On the other hand, may be also a risk
to simplify too much a topic and invite simplistic policy conclusions. Another cru-
cial theme is the simple indicators selection and their weights computation: it could
be the subject of political dispute. Furthermore, composite indicators may lead to
inappropriate policies if dimensions of performance that are difficult to measure are
ignored.

So, the debate is open, and like all methodological frameworks, also composites
have their pros and cons, as introduced above; we think that collaboration between
statisticians and experts, in addition to a clear explanation of the methodology, could
take towards a general agreement. For this reason, we think that model-based com-
posite indicators, and in particular PLS-SEM, could be a significant tool in this sense.
This method had a relevant evolution in the last 30 years, with many applications in
social sciences and psychometric [84, 88]. Recently, some bibliometric reviews have
been proposed [43]; in particular, it is important to highlight how the application of
PLS-SEM in the field of sport analytics is new and original.
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In the following, we will present an introduction of the topic (Sec. 2.1.1), then we
will focus on the PLS-SEM theory (Sec. 2.1.2), followed from some in-depth topics,
like how to assess a PLS-SEM (Sec. 2.1.3), the higher-order approach (Sec. 2.1.4),
how to manage moderating effects and the heterogeneity between observations (Sec.
2.1.5 and Sec. 2.1.7). Finally, a focus among pros and cons of PLS-SEM is given in
Sec. 2.1.8.

2.1.1 Model-Based Composite Indicators

In recent years, model-based composite indicators had a significant growing in dif-
ferent research fields, in particular PLS-SEM has becoming crucial for social science.
The forerunners of the PLS-SEM were two iterative procedures created from Herman
Wold those used least squares estimation to develop solutions for single and multi-
component models and for canonical correlation [134]. Starting from this procedure,
there has been different implementations during the years: Herman Wold still devel-
oped the Non-linear Iterative Partial Least Squares (NIPALS, [136]), followed from a
generalized version of the PLS algorithm focused on the inclusion of latent variables
in path models [135, 137, 132, 92]. Two relevant and well-known procedures evolved
from Wold’s works are the Principal Components Regression (PCR) and the Partial
Least Squares Regression (PLS-R). As summary, the first one is focused on reducing
the dimensionality of the independent features without taking into account the rela-
tionship between them and the dependent variables. Instead, PLS-R was originally
designed to reduce the problem of multicollinearity in regression models: its goal
is to optimize variance extracted from the independent variables (i.e. dimension
reduction) and simultaneously maximize the variance explained in the dependent
variables. This last technique was developed from the Wold’s son, Herman, in the
field of analytical chemistry.

Now, we are arrived to the more interesting result developed starting from the
Wold’s generalized PLS algorithm: PLS-SEM (Partial Least Squares Structural Equa-
tion Modeling, [66]), also known as PLS-PM (Path Modeling). This technique deter-
mines the parameters of a set of equations in a path model by combining principal
component to assess the measurement models with path analysis to estimate rela-
tionships between latent variables [75]. Wold [137], proposed his "soft-model basic
design" underlying PLS-SEM as an alternative to Joreskog [86] Covariance-Based
SEM (CB-SEM). CB-SEM is suitable as confirming theory approach, and it is char-
acterized from more restrictive assumptions in terms of data distribution and sam-
ple size, while PLS-SEM is appropriate as exploratory and theory development tool
both, but we will examine it more accurately in the following paragraph.

Nevertheless both approaches were developed about the same time, CB-SEM
became more famous thanks the LISREL software since the late 1970s, while the
first user-friendly commercial software for PLS-SEM was SmartPLS ([108], with a
graphical user interface). So, from 2005 PLS-SEM applications and related software
grew exponentially, and the more relevant tool, in addition to SmartPLS, is XLSTAT-
PLSPM1, an optional tool integrated in MS Excel, with implemented inside the RE-
BUS segmentation approach [58] too, for treating unobserved heterogeneity. For
free application, in the last 15 years were developed some interesting package on R
software, dedicated to PLS-SEM approach, for example: plspm [113], semPLS [101],
seminr [104], till the more recent csem package [99]. In the following sections, we will
use mainly the PLS-SEM nomenclature, since the term path modelling is preferred

1www.xlstat.com/en/products/xlstat-plspm

www.xlstat.com/en/products/xlstat-plspm
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over structural equation modelling in the PLS community [113] even though both
terms are often used interchangeably.

2.1.2 Theory under PLS-SEM

In general, structured equation modelling (SEM, [10, 87]) aims to measure the causal-
ity relation between concepts (i.e. latent variables, not directly observable) starting
from some observed indicators (i.e. manifest variables). The main two approaches
for estimating parameters in a SEM model are:

• Covariance-based method: based on the covariance matrix between manifest
variables.

• Component-based method: based on the research of particular latent compo-
nents.

In particular, PLS-SEM algorithm is a component-based method, and before analysing
it in detail we want to make its concept clearer. It is important the use of PLS-SEM
for creating composite indicators, that is our main objective [43]. As viewed above,
this technique aims to measure causality relation between concepts, that we will
call latent variables (LVs), starting from some manifest (MVs), by an exploratory
approach: the explained variance of the endogenous latent variables (e.g. the out-
comes) is maximized by estimating partial model relationships in an iterative se-
quence of ordinary least squares regression [101]. Another essential point is that
PLS-SEM does not require any preliminary assumptions for the data distribution, so
it’s called a soft-modelling technique.

PLS-SEM is characterized from three frameworks: the structural (inner) model,
the measurement (outer) model and the weighting scheme (i.e. its own distinctive
component). Graphically, it is represented in a user friendly way, thanks the so-
called path diagram (Fig. 2.1): contrary to the CBSEM approach, in the PLS context
each MV (in each rectangle) is just connected to one LV (in the circle). Moreover all
arrows connecting a LV with its block of MVs must point in the same direction and
the connections between LVs and MVs are referred as measurement or outer model.
In particular, a LV that point towards another one is named exogenous, while the
outcome LV is called as endogenous. For what concerning the outer model (Fig.
2.1), when all arrows pointing outwards, it is called a Mode A model (reflective
measurements); a model with all arrows pointing inwards is called a Mode B model
(formative measurements).
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FIGURE 2.1: PLS-SEM: an example of path diagram

The measurement (outer) model relates observed variables (MVs) to their latent
variables (LVs, also named factors). Such as mentioned before, in the PLS framework
one MV can only be linked to one LV, and all MVs related to one LV form a block;
so, each LV has its own block of indicators (at least one, like in Fig. 2.1). Before
proceeding we assume that all MVs in our data matrix X are normalized and that
each block Xg of MVs is positively correlated for all LVs ξg, g = 1, ..., G. Now, we are
ready to understand the two type of outer model:

• Reflective measurement (Mode A): as we can see in Fig. 2.2 a typical example
of reflective model is the case of intelligence test, where each block of MVs (in
this case each question of the test) reflects its LV; note that reflective indicators
are interchangeable, in fact if we remove an item we do not alter the underlying
concept (in this case the intelligence). It assumes also uni-dimensionality for
each block of MVs (just one latent concept is reflected on different indicators).

FIGURE 2.2: Example of reflective path model

In this framework, each block of MVs can be written as a multivariate regres-
sion:

Xg = ξgλT
g + Fg, E[Fg|ξg] = 0 (2.1)

Where Fg indicates the error terms and λg is the matrix of loadings, that can
be estimated thanks OLS. Keep in mind that, since we normalized data at the
beginning, we hold the constraint to have unit variance. Take in consideration
that, since each MV is a simple linear regression between its correspondent
LV and the estimated loading, we haven’t any multicollinearity problem be-
tween the indicators of each block. The main thing to verify in this case is the
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uni-dimensionality of each block, in order to validate our model, but we will
deepen this topic in Sec. 2.1.3.

• Formative measurement (Mode B): formative indicators are considered as
causing (i.e. forming) a latent variable (i.e. an emerging construct). In this case,
there may be theoretical or conceptual reasons to consider a block as formative:
this implies a strong consensus among experts about how the latent variable is
formed [113]. For instance, in Fig. 2.3 we can see the well-being as LV, caused
from its own MVs (i.e. health, income and employment). Compared with the
reflective model, in this framework if we omit one MV we lose a part of the
concept [47]; that is, formative indicators are not supposed to be correlated
and for this reason, they cannot be evaluated in the same way of reflective
measures.

FIGURE 2.3: Example of formative path model

From the theoretical point of view, each LV is considered to be formed by its
MVs following a multiple regression:

ξg = Xgwg + δg, E[δg|Xg] = 0 (2.2)

And here below the weighting block is estimated by least squares:

wgˆ = (XT
g Xg)

−1XT
g ξg

= VAR(Xg)
−1COV((Xg, ξg)

= COR(Xg)
−1COR((Xg, ξg)

(2.3)

Keep in mind that Xg is a matrix when the LV ξg is measured by a block of
more than one MV: noting, in that case VAR(Xg) refers to covariance matrix. It
is useful to compare the outer weights of each MV in order to determine which
indicators contribute most effectively to the construct. Attention must be paid
in order to avoid misinterpreting relative small absolute values of weights as
poor contributions. If we are considering the elimination of some indicators,
this should be done based on multicollinearity (see better in Chapter 3).

The structural (inner) model describes causality relation between LVs. For this
purpose, it divides LVs in two groups: exogenous and endogenous; in particular,
the first one does not have any predecessor in the path diagram, the rest are endoge-
nous. For example, if we suppose to have just one endogenous LV (and the rest as
exogenous), the linear equation of its own structural model is:

ξend =
G

∑
g=1

βg,endξg + ζend (2.4)
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Where the error terms ζ are assumed to be centred, βg links the g-th exogenous LV
to the endogenous one and it can be estimated in different ways [137, 92]:

• Centroid scheme:
βg = sign[Cor(ξg, ξend)] (2.5)

It shows some problems with very low correlation (i.e. ≃ 0).

• Factorial scheme:
βg = Cor(ξg, ξend) (2.6)

• Structural scheme: βg is an OLS coefficient of ξg that impact on the endogenous
ξend.

Before focusing on the model assessment, we summarize the PLS-SEM algo-
rithm, since it follows an iterative procedure that alternate outer and inner model
estimation until convergence is achieved, as follow:

1. Arbitrarily choice of the weights.

2. Measurement model: outer estimates for each LV.

3. Structural model: inner estimates for each endogenous LV.

4. Uploading the outer weights, following the relative scheme (A or B) and re-
turn to the point 2 until convergence is achieved (the relative difference be-
tween outer weights respect to the previous iteration is less than a small fixed
threshold).

When convergence is achieved, the algorithm calculates each LV such as linear com-
bination of its own MVs by weights obtained from the iterations. Finally, PLS-SEM
procedure computes path coefficients of the inner model by following the scheme
specifed (2.4).

2.1.3 Assessment and validation

When we work with composites and in particular with a PLS-SEM model, we are
not sure from the beginning that is the perfect approach for our framework: so, it
is useful a method able to assess and validate our model. In order to reach this
goal, due to exponentially growing of PLS-SEM, many researchers tried to build
some guidelines [80]. Here we propose an in-depth analysis about three important
assessment index in the PLS-SEM literature:

• Communality index: it measures the goodness of outer model; in particular,
it specifies how many variability of one MV is explained by its own LV. For
example, given a block of MVs g, it is computed as follow:

COMg =
1
pg

pg

∑
p=1

Cor2(xpg, ξg) (2.7)

Where, in (2.7) pg indicates the total number of MVs in the block g. As con-
sequences, for each MV xpg in the model, communality is the squared of the
correlation coefficient between it and the correspondent LV. Derived from (2.7),
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reliability of LVs is measured by the amount of variance that the LV captures
from its own indicators, as average communality:

COM =
G

∑
g=1

pgCOMg /P (2.8)

Where G is the total number of blocks and P is the total number of MVs.

• Redundancy index: it measures quality of the structural model for each en-
dogenous LV, keeping in consideration also the measurement model. Called
J the total number of endogenous LV, it states the powerful of exogenous LVs
to predict the outcomes. We can express it as the product between the j − th
endogenous block and R2 index of its structural relation:

REDj = COMj × R2(ξ j, ξ
′
m) (2.9)

Where ξ
′
m indicates all LVs related to the outcome ξ j. In order to measure

the global quality of the structural model, it is useful to compute the average
redundancy for all the blocks of endogenous LVs:

RED =
1
J

J

∑
j=1

REDj (2.10)

• GoF index: the last, but not the least, we find the goodness of fit (GoF); it is an
intermediate solution, because it considers both the inner and outer model in
its computation:

GoF =

√︂
COM × R2 (2.11)

With R2 computed as follow:

R2 =
1
J

J

∑
j=1

R2(ξ j, ξ
′
m) (2.12)

This is the most synthetic index in PLS-SEM world, but we must pay attention
and interpret it with prudence, as suggested from the scientific community,
since it is just a geometric mean between the inner and outer model perfor-
mance and it does not say us if the model is replicable in other context.

With the aim to validate the index (and so, also the model) described above, all the
software introduced at the beginning of Sec. 2.1 propose a bootstrap validation,
which let us to obtain a confidence interval for each parameter, testing their signifi-
cance.

Finally, in this paragraph we showed the most important assessment index in
the PLS-SEM framework, then we have seen how to evaluate it, in particular how to
assess and verify the reliability of the outer and the inner model. We tried to give
some guidelines, by recent growing literature in the PLS-SEM world.

2.1.4 Higher order PLS-SEM

Now, we talk about an important extension applicable in the PLS-SEM framework:
the Higher-Order Construct Models, also known as Hierarchical Models. As the
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name says, they contain LVs of "higher-order" (HOCs) and the conceptual idea be-
hind them is that they are supposed to be at a higher level of abstraction. We have
already seen that LVs represent abstract of theoretical concepts, but sometimes we
need extra LVs representing other constructs [113]. In Fig 2.4 we can see the well-
known example of higher-order construct (HOC), that comes from psychometric lit-
erature: the General Intelligence Ability (second-order), that is supposed to be re-
flected by three lower order constructs (first order, LOCs) ability (verbal, numerical
and spatial). The application of hierarchical models is often limited to a second-
order structure, but in literature there are applications with third, fourth or higher
order latent variables.

FIGURE 2.4: Example of higher-order construct: the GIA index

Noting that there are two types of hierarchical models in literature: when the
higher-order LV is reflected by some lower order LVs we refer as molecular model
(Fig. 2.4), while if the higher-order LV is formed by some lower-order constructs
we refer as a molar model. There is also a more recently classification that, in addi-
tion, keeps in consideration the relation among the first-order latent variables and
their manifest variables [3]. Following this suggestion, we can classify four types of
higher order constructs (Fig. 2.5):

• The Type I is the Reflective-Reflective Measurement Model: it is one of the most
frequently applied framework, it is used when both the HOC and the LOCs
are reflective constructs.

• The Type II is the Reflective-Formative Measurement Model: here the LOCs are
selectively measured constructs that do not share a common cause but rather
form a general concept that fully mediates the impact on subsequent endoge-
nous variables [38]. In the last ten years, this type of model has become the
most widely used in empirical applications [3, 39].

• The Type III is the Formative-Reflective Measurement Model: in this case, the HOC
is a common concept of several specific formative LOCs. There aren’t many
examples in the empirical literature, but an interesting application is the firm
performance, seen as a reflective HOC measured by several different LOCs
indices [3].

• The Type IV is the Formative-Formative Measurement Model: this framework is
appropriate when both the HOC and LOCs are formative constructs. This last
application has only a lack: there is a large need for guidelines on the use of
this framework in PLS-SEM [3].

Whereas for the reflective relationship there are some available guidelines [41, 49],
for what concern formative constructs the situation is different: despite some em-
pirical studies indicate the predominance of formative hierarchical models, a clear



2.1. Methodology 27

guideline on their use is lacking in the literature [91]. It is important to underline

FIGURE 2.5: The four types of higher order constructs

also the fact that a higher-order LV, since it is an "artificial" latent variable, it does
not have by default any MVs, and we remind that LV with no indicators has no
place in the PLS-SEM models. In order to fix this problem, there exist two main
approaches used in literature for the HOC estimation:

• Repeated indicators approach: this is the simplest technique in the framework
of hierarchical models [131]. It consists of taking all MVs of the lower order LVs
and using them as MVs for the higher-order construct (Fig. 2.6), then apply to
this framework the PLS-SEM algorithm. The main weakness of this approach
is that all indicators must be treated just in reflective way [113], because of
multicollinearity problems.

FIGURE 2.6: The repeated indicators approach

• Two-step approach: as its name suggest, this technique is divided in two steps,
where in the first we have to apply PCA or FA (i.e. factor analysis) on each
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block of LOC, then we must save their scores (e.g. the first principal compo-
nent for each one, [113]); in the second phase of the procedure we will apply
PLS-SEM using the computed scores as MVs of the higher order LV (Fig. 2.7).

FIGURE 2.7: The two-step approach

In particular, ξ̂
PCA
1 and ξ̂

PCA
2 are the scores (i.e. first principal component) from

the lower order LVs (respectively, the LVs number one and two). Moreover,
also this approach has its own weak point: the first is that just one component
is chosen for each block of lower LVs; the second is that this component has a
strong representative power but a weak predictive power [41, 49].

In order to overstep some limits of the previous methods, researchers are study-
ing different solutions. Here below we propose two interesting techniques [41, 49],
tested at the moment only for the case of second-order constructs:

• Mixed two-step approach: this method is an extension of both the two tech-
niques described above, and it has the goal to solve the issue related to the
predictive power of the component for each first-order construct. In order to
do this, it provides for the following steps (Fig. 2.8):

1. We have to apply a repeated indicators approach.

2. We must save the scores of first order LVs, use them as MVs for the second
order LV and re-apply PLS-SEM in this new framework.

FIGURE 2.8: The mixed two-step approach
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• PLS-CR approach: this other method aims to solve the problem regarding the
choice of components number for each block of MVs. In fact, PLS Component
Regression gives the possibility of choosing the number of components to be
extracted manually or according to a criterion. Moreover, it provides compo-
nents that are at the same time representative of their blocks and predictive
of the second-order construct. In particular, first-order LVs are considered as
blocks of predictors and the second-order construct as a block of response vari-
ables. It follows these steps (Fig. 2.9):

1. We must apply PLS regression for each block of first-order LVs.

2. Then, once h components for each block have been obtained, these will be
the MVs of the higher-order LV.

3. Finally, we must apply PLS-SEM to the framework obtained at the previ-
ous step.

FIGURE 2.9: The main steps of PLS-CR approach

Researchers made some simulation studies, in order to compare these different
approaches; for example, the last two methods seen before slightly outperform, in
terms of prediction accuracy, the two-step approach. Furthermore, they are prefer-
able in terms of the BIAS and MSE of the estimates (i.e. smaller errors than two-step
method). Finally, working with a small sample (saying, less than 100 units), the
mixed two-step approach is recommended (i.e. better quality of the model), while
with a large sample size the two algorithms have similar results, with performance
slightly better for PLS-CR. Again, [49] tested all four types of HOCs (Fig. 2.5) thanks
a simulation study, confirming how the mixed two step and the PLS Regression ap-
proaches are always the best choices, in terms of bias and MSE (i.e. mean square
error) of the estimates. At the moment for third or higher-order PLS-SEM the best
tested method is the two-step approach yet, but researchers are moving also to im-
prove these frameworks.

2.1.5 Moderating effects in PLS-SEM

At this point, we do a brief panoramic about moderating or interaction effects, that
are another question to take into account when we work with PLS-SEM. In particu-
lar, they represent the influence that a third variable has on the relationship between
an independent (i.e. in our case the exogenous LV) and a dependent (i.e. in our case
the endogenous LV) variable (Fig. 2.10). Moreover, the moderator variable, that for
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simplicity we call MoV, can be qualitative (e.g. gender, ethnicity) or quantitative
(e.g. age, income).

FIGURE 2.10: Example of interaction effect between two LVs

In order to study moderating effects, there are two main options:

• Group comparisons: it is useful when MoV is qualitative, in order to evaluate
the observed heterogeneity between units (see better in Sec. 2.1.7); for exam-
ple, some software and tools cited in Sec. 2.1.1 have implemented a function
that compare, thanks a bootstrapping resampling or a permutation test, two or
more groups and test if difference among them is significant or not [113].

• Moderator constructs: it is better to apply this one when the MoV is treated as
LV. As consequence, under this approach, moderator variables are just consid-
ered in the structural model. It has preferred to use this approach when MoV
is quantitative, but we can also if it is qualitative. There are three main ways
to study the effects of latent MoV:

1. Product indicator approach: as its name says, thanks to this method we
have to add another LV, that we can call as Interaction, whose MVs are
all possible products between all MVs of the exogenous LV and all MVs
of the MoV. Then, thanks to a bootstrap validation we can see if the
interaction terms are significant or not.

2. Two-stage PM approach: it consists on two stage, where in the first we
must apply the classic PLS-SEM to the whole model; in the second step
we have to take the scores obtained in the first stage for creating the in-
teraction term and perform a second PLS-SEM including the scores as
indicator of the constructs [113].

3. Two-stage regression approach: in its first stage we have to apply the
PLS-SEM classic, while in the second we must perform a regression anal-
ysis with the scores of the first stage [113].

2.1.6 Mediation effect in PLS-SEM

Mediation occurs when a third mediator variable intervenes between two other
related constructs. More precisely, a change in the exogenous construct causes a
change in the mediator variable, which, in turn, results in a change in the endoge-
nous construct in the PLS path model. Analyzing the strength of the mediator vari-
able’s relationships with the other constructs allows substantiating the mechanisms
that underlie the cause-effect relationship between an exogenous construct and an
endogenous construct. In the simplest form, the analysis considers only one me-
diator variable, but the path model can include a multitude of mediator variables
simultaneously [75].
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2.1.7 Heterogeneity in PLS-SEM

Until now, we have implicitly assumed that data adopted in our PLS-SEM analysis
came from a homogeneous population, but in reality, this assumption is often un-
realistic. In fact, people (with their peculiarity), corporations (with their structure),
or environments (with their dynamism) are frequently different, and probably if we
analyse all data without take into account this heterogeneity is likely to produce
misleading results and incorrect conclusions [116]. For example, as mentioned in
Sec. 2.1.5, if we consider a dataset of consumers, and we take into account as mod-
erator variable the people’s gender, from a technical prospective we must split our
dataset into two consumer groups and this imply to estimate two different models.
Very relevant, if we fail to recognize the heterogeneity between groups and we anal-
yse the whole dataset, the path coefficients estimates offer an unrealistic picture of
the model relationships [75]. As consequence, it is very important to identify, as-
sess, and, if there is, treat heterogeneity in our data. When differences between two
or more groups of units are referred to observed features, such as gender, age, or
nationality, this is called observed heterogeneity, and it is used to treat it by split-
ting the dataset and creating some different PLS-SEM models, one for each group
(e.g. one for males and another for females) and to evaluate their differences (Sec.
2.1.5). Opposite, if differences between two or more groups of data do not emerge
a priori from observable characteristics but they appear in the structural path co-
efficients, we talk about unobserved heterogeneity. In order to take into account
unobserved heterogeneity, researchers firstly tried to apply the classical clustering
technique, such as the well-known K-means algorithm [94] on the indicator data, or
LV scores derived from a proceeding analysis of the entire dataset [115]. The typical
approach by apply a clustering method followed in sequence from a regression or
other analysis on the obtained segmented data has called as tandem analysis; but for
the case of PLS-SEM there is a problem: clustering techniques ignore path model re-
lationships specified at the beginning of our analysis, that is essential for a PLS-SEM
model. Therefore, some others researchers has shown how traditional clustering
performs very poorly in identifying group differences in PLS-SEM [116]. Seeing the
limitations of sequential approaches, methodological research has suggested some
specific methods to identify and treat unobserved heterogeneity, commonly referred
to as latent class techniques. In this context, the most relevant algorithms (i.e. able
to account for sources of heterogeneity in the structural model) recognised from the
PLS-SEM community, each one with its own pros and cons, are:

• FIMIX-PLS: the finite-mixture segmentation approach [65], is the pioneer tech-
nique for identifying unobserved heterogeneity in PLS-SEM models. Its pecu-
liarity is that it assumes each endogenous LV distributed as a finite mixture
of conditional multivariate normal densities; it uses then these densities to
estimate probabilities of segment memberships for each observation (propor-
tional assignment) to optimize the likelihood function. At the beginning, this
algorithm provides a random split of the observations and in each iteration
there is a proportional assignment of all units to all segments based on the
conditional multivariate normal densities, in order to optimize the likelihood
function. FIMIX-PLS stops when there is a very small improvement in the log-
likelihood (i.e. under a fixed value) or if the maximum number of iterations
has reached.

• REBUS-PLS: this algorithm [58, 130, 113] is a sort of "upgrade" respect the pre-
vious techniques, in fact it does not require any preliminary assumptions; its
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only limit (not to underestimate), it is feasible just with reflective blocks. It is
a so called distance-based clustering approach, based on communality resid-
uals of all LVs and structural residuals of all endogenous ones.As initial step,
it provides a hierarchical classification based on communality and structural
residuals of the overall model, while in each iteration it assigns all observa-
tions to the closest segment. REBUS-PLS routine ends when stability of the
classes’ composition holds, in alternative when the maximum number of iter-
ations is reached.

• PLS-POS: it is the only method [4, 75] that take into account for sources of het-
erogeneity in formative constructs. On the other hand, it does not hold for re-
flective measures. It has not the pre-clustering phase: in fact it provides randon
split of units and assignment to the closest segment according to the distance
measure. So, also PLS-POS is a distance-based clustering approach, based on
structural residuals of all endogenous LVs with an extension that also accounts
for heterogeneity in formative measures. For each iteration, this procedure as-
signs only one observation to the closes segment and assures improvement of
an objective criterion (R2 of all endogenous LVs) before accepting the change.
PLS-POS stops when there is an infinitesimal improvement in the objective
criterion (i.e. or maximum number of iterations).

In Tab. 2.1 we have tried to summarise all pros and cons for each one of the previous
methods, in order to give a clearer comparison among them.

TABLE 2.1: A summary comparison between clustering algorithms

Feature FIMIX-PLS REBUS-PLS PLS-POS

Distrib. assumptions Yes No No
Pre-clustering No Yes No
Distance measure No Yes Yes
OK for reflective measures? No Yes No
Ok for formative measures? No No Yes
Ok for structural model? Yes Yes Yes
Observations assignment All All Only one
Stop criterion Small impr./max it. Stability/max it. Small impr./max it.

2.1.8 PLS-SEM limits

Until now we have seen all peculiarities and features of PLS-SEM, its non-parametric
nature, but when we apply this technique we must pay attention also to some critical
point, emphasize in different researches. For example [56] proofed the inconsistency
of PLS-SEM in the reflective approach by showing adverse results in the hypothe-
sis test. The solution proposed is a framework called PLS consistent (i.e. just for
reflective constructs), that performs particularly well when the initial data are not
normally distributed. [111] focus on the lack of methodological justification for PLS-
SEM, mainly on the use of PLS weights, that for them have no firm basis in statistical
theory, since it is an heuristic-method. They showed that PLS-SEM is regression with
scale scores and thus has very limited capabilities to handle the wide array of prob-
lems for which applied researchers use structured equation modelling (SEM). So,
[110] proposed an alternative way to estimate a PLS-SEM model, working with data
covariance matrix, designed to be computationally efficient. Some other extensions
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of the base PLS-SEM have been developed, in order to overcome the PLS-SEM lim-
its: one of these is the GSCA (i.e. Generalized Structured Component Analysis, [83]),
that replaces factors by exact linear combinations of observed variables. It employs
a well-defined least squares criterion to estimate model parameters. As a result,
GSCA avoids the principal limitation of partial least squares (i.e. the lack of a global
optimization procedure) while fully retaining all the advantages (e.g. less restricted
distributional assumptions).

Like all the statistician techniques, also PLS-SEM have pros and cons; the main
things we must take into account before to be inclined towards a PLS-SEM analysis,
are essentially three: we have to know very well the data to be analysed, we must
have clear in mind the objective of our analysis and it is recommended to collaborate
with experts in order to develop a consistency theory under our path model. With
this purpose, in the following part of this chapter an exploratory application [26] for
football analytics will be presented.

2.2 The application

In recent years, football, the most watched sport in the world, has been moving to-
wards a data-driven revolution [25]; in particular, football analytics was born with
the aim to predict the results of a match, and there have been many papers on this
subject [23]. Furthermore, starting a few years ago, this field of research has been
moving towards the evaluation of players’ performance, which is becoming a strate-
gic key for football coaches in the management of the team. For this purpose, differ-
ent approaches have been developed: for example, Pappalardo [102] adopted a sup-
port vector machine (SVM) observing match outcomes to evaluate players’ perfor-
mance, Schultze and Wellbrock [120] created a rating index employing a plus-minus
metric, and Carpita [21] adopted an unsupervised method to classify different ar-
eas of performance. Attention will be focused on this last issue: in fact our goal is
to explore players’ key performance indices (KPIs), in order to evaluate and weight
different strategic skills; this can be useful for understanding any of a coach’s key
choices, as well as to guide decisions to transfer a player, contract negotiations, and
to improve future predictive modelling. We must keep in mind that players’ perfor-
mance has been tried to measure by using data coming from a survey organised by
Electronic Arts (EA) Sports experts that combine the subjective evaluations of over
9000 scouts, coaches and season ticket holders -who watch as many live matches as
possible- into ratings for over 18000 players (EA FIFA2 ratings, [95]); they constantly
maintain this database with systematic and periodical data collection. These data are
also integrated in one of the most famous football videogame FIFA by EA Sports3

experts. In particular, the EA Sports experts consider 6 performance dimensions (la-
tent traits) defined by 6 composite indicators, each one with specific KPIs which can
be combined into the well-known EA overall indicator: using these data, McHale et
al. [98] already developed a player performance rating system for the English Pre-
mier League, but without taking into account the player’s position or role; Matano
et al. [95] combined FIFA ratings and an adjusted plus-minus approach into a sin-
gle metric, whereas Kirschstein and Liebscher [89] used these data to predict and
assess the market value of a soccer player. More recently, Biecek and Burzykowski
[7] tried to use these data for the 2018/2019 season to evaluate and combine players’
performance and market value.

2www.FifaUltimateTeam.it
3www.easports.com

www.FifaUltimateTeam.it
www.easports.com
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Along with other widely available data (i.e., players’ wage and monetary value),
performance attributes guide strategies for forming competitive sports teams: rather
than relying exclusively on subjective and error-prone intuition, scouts, technical di-
rectors and coaches turn to plausible, available and up-to-date data to select players
for their teams or to determine the team line-up [6]. A number of studies confirm
how experts’ evaluations proved useful not only for skills classification, but also for
the prediction of players’ monetary value as well as merchandising potential [44,
89].

But at this point the main problem is that experts’ opinions are not statistically
supported [20, 22] and furthermore it is not clear how they keep in consideration
players’ heterogeneity (their roles on the field for example): Carpita et al. [21] found
some significant differences in performance KPIs depending on the player’s role,
studying their densities and presenting a preliminary model, but without taking into
consideration the viewpoint of the sports scientist. In fact, It has been verified that
there is no agreement among experts in defining a unique model of performance.
For this, sport scientists have proposed different approaches, for example, from a
technical-tactical point of view [60] or keeping in consideration the ball-in-play time
of a match [105], to studying the physical peak demand for each player. In order to
improve the preliminary model defined by Carpita et al. [21] from a statistical point
of view and to take into consideration different opinions from both sofifa experts and
sport scientists, a partial least-squares structured equation model (PLS-SEM, [133])
that uses a third-order approach ([113]) has been developed, improving the early
bird PLS-SEM second-order model presented by Cefis and Carpita [30], with the
final goal to explore and measure players’ performance in its totality (i.e. an overall
indicator) and its subgroups (e.g. the 6 areas of performance defined by EA experts).
Infact, as pointed by experts, a player needs some complementary abilities on the
field [82] and it is useful also taking in consideration heterogeneity among them (i.e.
role and league). The goal is to make easier for policy makers, managers and sport
scientists the players evaluation, by different sub-areas of performance, that is more
and more crucial for a football team. In addition, from a sport scientist point of
view, sport evaluation is a fundamental moment in the training process of athletes
and teams and is an indispensable support for the coach [57].

After this introduction, this application is organised as follows: data and roles
classification are presented (Sec. 2.2.1), then an in-depth analysis regard the frame-
work developed in Sec. 2.2.2 and finally some results are shown in Sec. 2.2.3.

In summary, this is an exploratory work, that aims to replicate the EA overall
indicator by an innovative Third-Order PLS-SEM measurement model, taking into
consideration both statistical evidence and experts opinion, validate it, create a full
model (i.e. with all players) and compare this one by splitting data among roles and
leagues, in order to take into consideration the observed heterogeneity.

2.2.1 Data and role classification

For this application data provides from EA experts and available on the famous Kag-
gle data science platform by Leone4 has been used; in particular, the focus will be on
all players’ stats from the top 5 European Leagues (e.g., Italian Serie A, German Bun-
desliga, English Premier League, Spanish LaLiga and French Ligue1). This dataset
contains another 28 variables (e.g. KPIs), with periodic player’s performance on a

4www.kaggle.com/stefanoleone992/fifa-20-complete-player-dataset, named "Fifa 20 com-
plete player dataset"

www.kaggle.com/stefanoleone992/fifa-20-complete-player-dataset
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0–100 scale with respect to different abilities, classified by sofifa experts into 6 la-
tent traits of performance: attacking, skill, movement, power, mentality, defending (for a
detailed classification, see Tab. 2.2); caused of the purposes it has been used data re-
lying on the beginning of the season 2018/2019, so our dataset was composed from
the stats of about 2662 players (note that goalkeepers have been excluded from the
analysis, due their singularity role).

TABLE 2.2: Classification of KPIs.

sofifa LV KPIs/MVs MVs label

Crossing att1
Finishing att2

Attacking Heading accuracy att3
Short passing att4
Volleys att5

Dribbling ski1
Curve ski2

Skill FK accuracy ski3
Long passing ski4
Ball control ski5

Acceleration mov1
Sprint speed mov2

Movement Agility mov3
Reaction mov4
Balance mov5

Shot power pow1
Jumping pow2

Power Stamina pow3
Strength pow4
Long shot pow5

Aggression men1
Interception men2

Mentality Positioning men3
Vision men4
Penalties men5

Marking def1
Defending Standing tackle def2

Sliding tackle def3

In addition, to classify roles, the main advice of football experts has been fol-
lowed [82] in order to get the specific role of each player (and not the classical three
roles, such as defender, midfielder or forward): we can see better this classification
in Fig. 2.11. Recall that goalkeepers have been excluded from the analysis, due to
their singular role.
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FIGURE 2.11: Players’ roles classification by experts on the pitch

2.2.2 The framework developed

By following the suggestions provided by experts [105, 60], the PLS-SEM framework
was developed to manage simultaneously these two models:

• The measurement (outer) model, that links MVs (KPIs) to their corresponding
LVs. Each block of MVs Xg, g = 1, . . . , G = 6 (Tab. 2.2) must contain at least
one MV and this relation has been treated in a formative way (MVs are the
causes of their own LV, [36]). In particular, it has been assumed each LV ξg
as formed by its KPIs following a multiple regression (2.13), where wg is the
vector of outer regression weights and δg of error terms, with their conditional
expected value assumed to be zero (2.14). Finally, the vector of outer weights
for the g-th LV is estimated by OLS (2.15, Mode B).

ξg = Xgwg + δg (2.13)

E[δg|Xg] = 0 (2.14)

wg = (Xg
TXg)

−1Xg
Tξg (2.15)

In this case (i.e. with formative constructs) PLS-SEM computes for the outer
model also the loadings (i.e. λ), which represent correlations between MVs
and their own correspondent LV estimated [113].

• The structural (inner) model, that divides LVs in two groups: exogenous and
endogenous. The first one does not have any predecessor in the path diagram,
the rest are endogenous (Fig. 2.12). For the j-th endogenous LV in the model,
the linear equation of its own structural model is defined in (2.16), by standard-
ized data; in particular, R represents the number of exogenous LVs that affect
the endogenous one and βrj is so called path coefficient, a linkage between the
r-th exogenous LV and the j-th endogenous one, where ζ j is the error term.

ξ j =
R

∑
r=1

βrjξr + ζ j (2.16)
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Where the error terms ζ j are assumed to be centred, βrj is so called path-
coefficient, it links the r-th exogenous LV with the endogenous one and it can
be estimated by following one of these more recently approaches [92]:

– Factorial scheme: βrj is the correlation coefficient between the endoge-
nous LV ξ j and the exogenous one ξr.

– Structural scheme: βrj is an OLS coefficient of ξr that impact on the en-
dogenous ξ j.

For the purpose of this work, it was used the factorial scheme. So, you must
keep in mind, in order to avoid misinterpretation, that β coefficients which
you will find respectively in Fig. 2.13 and in Fig. 2.18 are the correlations
between each exogenous and endogenous LVs and so they are not regression
coefficients.

A Higher-Order construct model (HOC, also called hierarchical model) is adopted,
so LVs that represent superior levels of abstraction can be included. We have already
seen that LVs represent abstract of theoretical concepts, but sometimes we need extra
LVs representing other constructs [113]. In particular, a third-order model is used.
In fact, for the purpose of this project, players’ performance was built as an extra-
latent construct of higher (third) order, formed from two extra LVs (second order
constructs), namely, Off_phase (the phase where a player is in attack, i.e. in the oppo-
site midfield, with or without ball possession) and _phase (the phase where a player
is in defense, i.e. in his own midfield, with or without ball possession) [105, 60]. It
has been assumed that the initial 6 sofifa LVs (first order constructs) contribute to the
second-order LVs in the following way: all first order LVs except defending shape the
Off_phase, while all LVs except attacking contribute to Def_phase (Fig. 2.12).

Since our framework have a third order construct, in order to avoid some collinear-
ity problems, a two-step or patch approach is used [113]: in the first step of this
method, a principal component analysis (PCA) is used to obtain scores of the lower-
order LVs (the first principal component - I PC - of each one), and in the second step
standard PLS-SEM uses these PCs as MVs for the higher order LVs. Consequence
of this approach, we assumed a reflective relation between the HOCs and their own
MVs. Of course, this approach has its own weak points: the first is that just one
component is chosen for each block of lower LVs; the second is that this component
has a strong representative power but a weak predictive power [24]. In order to ex-
ceed that limits, in the last years have been developed some new techniques in the
estimates of HOCs, like the Mixed Two Step approach or the Partial Least Squares
Component-Regression approach, but at the moment they are tested only for the
case of second order constructs [41].

In particular, the MVs adopted for Off_phase are the I PCs of attacking, skill, move-
ment, power and mentality (labelled as offcomp1 to offcomp5 in the graphs of Sec. 2.2.3),
while for Def_phase the I PCs of movement, power, mentality, defending and skill (de-
fcomp1 to defcomp5 in the plots of Sec. 2.2.3). Finally, the I PCs of Off_phase and
Def_phase are used as the MVs for Performance.

For the measurement (outer) model estimation of each HOC, as already intro-
duced, a reflective (Mode A) relation between the HOCs and their own MVs was
assumed, by construction (i.e. PCA): each block of MVs reflects its own LV; note that
reflective indicators are interchangeable, in fact if we remove an item we do not alter
the underlying concept. It assumes also uni-dimensionality for each block of MVs
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FIGURE 2.12: Path diagram: the third-order inner model for players’
performance

(just one latent concept is reflected on different indicators).

PCI
g = ξHOC

g λT
g + Fg, E[Fg|ξHOC

g ] = 0 (2.17)

Where Fg indicates the error terms and λg is the matrix of loading coefficients, that
can be estimated by OLS:

λ̂
T
g = ((ξHOC

g )TξHOC
g )−1(ξHOC

g )TPCI
g (2.18)

Where PCI
g represents the block g (i.e. as a matrix) of the first principal components

scores (i.e. the MVs) by that specific HOC g; for example, considering the Off_phase
as ξHOC

g , its block g of MVs (PCI
g) is composed by the first principal components

scores of attacking, skill, movement, power and mentality. Keep in mind that, since we
normalized data at the beginning, we hold the constraint to have unit variance, so
the equality in (2.18) is valid. Since each MV is a simple linear regression between
its correspondent LV and the estimated loading coefficient, we haven’t any multi-
collinearity problem between the indicators of each block [133].

In order to evaluate the performance of the model, a GoF (Goodness of Fit, [133])
index is computed; this is the most synthetic performance index in the PLS-SEM
context, but we must pay attention and interpret it with prudence, as generally sug-
gested [79], since it is just a geometric mean between the inner and outer model
performance and it does not tell us if the model is replicable in other context.

Until now the model has been described, implicitly assuming that the data came
from a homogeneous population, but in reality, this assumption is often unrealis-
tic. In fact, players (with their particularities) are frequently different, and analysing
all the data without taking into account this heterogeneity is likely to produce mis-
leading results and incorrect conclusions [116]. So, the innovation of this study is
considering observed heterogeneity among players’ roles and leagues; it is usually
treated by splitting the dataset and creating different PLS-SEMs, one for each group
and evaluating their differences. In order to do this, two tests have been performed:
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• "A test for multigroup comparison using partial least squares path modeling"
[90] proposed by Klesel, Schuberth, Henseler and Niehaves; in this approach
the model-implied variance-covariance matrix (for both MVs and LVs) is com-
pared across groups. It measures the distance between the model-implied
variance-covariance matrices by the well-known squared Euclidean distance.
If more than two groups are compared, it uses the average distance over all
groups.

• An intuitive multi-group test has been performed to evaluate group differ-
ences in the estimates: this approach is based on the confidence intervals (CIs)
constructed around the bootstrap estimates (i.e. it works by comparing two
groups at a time). If the parameter of one group is covered by the CI of the
other one and/or vice versa, it can be concluded that there is no group differ-
ence [114].

Finally, as an in-depth analysis to test its predictive power, a comparison with a
benchmark model is provided; GSCA (Generalized Structured Component Analysis,
[83]) is used for this purpose, that replaces factors by exact linear combinations of
observed variables. For the work the R packages csem [99] and seminr [122] have
been used; it was applied a bootstrap validation (i.e. 1000 resampling) for the model
in order to assess the path significance. In the next section, the results are shown.

2.2.3 Results

In this section some results are shown, organised in this way: first of all there will be
a focus on the estimates for the full model and its performance. Then some output
considering the heterogeneity observed among leagues and roles. Finally, a para-
graph concerning an in-depth analysis of the model for the midfielder is provided,
followed by a global comparison of the models created.

The full model

As a starting point, a full PLS-SEM (i.e. using all 2662 players) is created; in Fig. 2.13
the parameter estimates and their statistical significance are shown, with circles rep-
resenting LVs and rectangles MVs. The directions of the arrows for the outer model
of LOCs (on the left) from MVs to LVs represent the formative framework whereas
for the HOCs the arrows point from LVs to MVs (e.g. the I PCs) and represent the
reflective model; the thickness of the arrows is proportional to the strength of their
effect. Above each arrow of the outer model are located the loadings (i.e. λ) between
each MV and the corresponding LV. For the inner model, β above each arrow repre-
sents the correlation (i.e. the path coefficient) among each couple of exogenous and
endogenous LVs, following the factorial scheme (2.16). Asterisks next to each value
represent its statistical significance (after 1000 bootstrap resampling); dotted arrows
mean negative values for the corresponding parameters.

Fig. 2.13 shows that Off_phase has a stronger correlation on the performance than
Def_phase (0.57 vs 0.43, both significant); it is interesting noting also how all LVs are
significant (p-values < 1%, ***). Concerning the inner model related to the Off_phase,
the attacking abilities have the strongest path coefficient (βattacking = 0.3), followed
by generic skill (βskill = 0.26); we can note also that mentality, power and movement
have a similar value on the Off_phase. Regarding Def_phase, the strongest one is that
of the generic skill abilities (βskill = 0.36), followed by mentality (βmentality = 0.28);
it is curious how defending has the lowest path coefficient on Def_phase. About MVs,
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FIGURE 2.13: Output of the full model considering all 2662 players

some of them have negative loadings with the related LV, making interpretation
difficult for some of them (e.g. defending); other ones have very low loadings (near
to zero) for example "att3" related to attacking, "men1" for mentality or "pow4" for
power.

About the performance of this model, compared to the benchmark overall indi-
cator from EA Sports, this new indicator has a medium correlation (0.65, Fig. 2.14).
It has also a good GoF index (0.76) after the bootstrap validation. The scatterplot in
Fig. 2.14 compares EA overall performance versus the performance indicator of the
PLS-SEM (i.e. standardized values), suggesting a pattern that depends on the role:
this figure shows clear differences in the PLS-SEM indicator depending on the role,
while this does not seem to be true for the EA overall.

In summary, the indicator obtained with this model has a medium correlation
with the benchmark indicator and a good performance in terms of GoF, but some of
the LVs and MVs are difficult to interpret; some of them have also a weak path (i.e.
near to zero). It has been shown how there could be a pattern depending on the role,
which it will be analysed in-depth in what follows.
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FIGURE 2.14: PLS-SEM overall performance indicator vs EA overall
performance indicator by roles

Heterogeneity observed among leagues

In this paragraph, heterogeneity among the top 5 EU leagues is examined in order
to see if it works as confounding factor for the model built in Sec. 2.2.3. Preliminary
results of the test of Klesel et al. suggest rejecting (p-value < 5%) its null hypoth-
esis (i.e. equality across leagues) for what concern MVs, while to accept it for con-
structs (LVs, p-value > 5%): it seems there are not significant differences between
the variance-covariance matrices of the different leagues for the LVs, while there are
for the MVs. Then, the output of the second test is presented using an heat-map (Fig.
2.15) with the non-overlapping rate from the bootstrap CI: this rate is the proportion
between the number of non-overlapping CIs and the total number of CIs (i.e. it in-
cludes path coefficients of the inner model and weights of the outer model both, so
52 estimates in total).

FIGURE 2.15: Heatmap of non-overlapping rate from 95% bootstrap
CIs by league

Legend: central backs (CB), full backs (FB), midfielders (MF), offen-
sive midfielders (OM), wings (WG) and forwards (FW)
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In Fig. 2.15 we can see the leagues with more differences in the PLS-SEM esti-
mates have a darker colour (i.e. dark blue), in particular ENG vs SPA, FRA vs SPA
and ITA vs ENG. In every case, this does not seem to be relevant, because the maxi-
mum rate for that is 8%: this means for example that the comparison of the English
Premier League and Spain’s LaLiga differs just for 4 estimates out of 52. So, consid-
ering these leagues separately does not seem useful, and so it does not contribute to
confound the general model.

Heterogeneity observed among roles

The other aspect about the heterogeneity observed in the dataset is due to the dif-
ferent roles (Sec. 2.2.1). This is crucial, since the aim is to investigate whether it
is a possible confounder. The same method is used as in the previous subsection:
the first multi-group test suggests rejecting (p-value < 5%) its null hypothesis (i.e.
equality across roles) for both MVs and LVs variance-covariance matrices. Then, an
heat-map of the non-overlapping rate of bootstrap CIs among different roles defined
by experts [82] is presented (Fig. 2.16). As in the previous interpretation, a darker
colour (i.e. dark blue) indicates a high rate of non-overlapping (i.e. high diversity)
between roles. Colours from light blue to white mean there is significant similarity
between the different roles.

FIGURE 2.16: Heatmap of non-overlapping rate from 95% bootstrap
CIs by role

Legend: central backs (CB), full backs (FB), midfielders (MF), offen-
sive midfielders (OM), wings (WG) and forwards (FW)

Unlike the case with the leagues, Fig. 6 shows how for roles the situation is
different: the colour scale reaches a rate of 50% (dark blue) in the top left (also bottom
right, since the matrix is symmetric). For instance, looking at the role of CB and the
differences between its estimates and those of the other roles (the first column of
the heat-map), there is a low rate of non-overlapping for CB versus FB and MF (less
than 30%), while there is a medium high rate versus offensive roles (i.e. FW, OM
and WG). But, if we look at the last column, concerning FW, they have a high rate of
differences versus CB and FB, a medium rate with MF, while this is minimal versus
OM and WG. The only role that seems to have more equilibrated estimates is, as
could be expected, the MF (no dark blue rates in its own column). Summarizing,
we can see very significant differences between the estimates for the roles, more so
than when considering leagues. In order to have a clearer idea, a summary plot is
presented in Fig. 7 with path coefficients (i.e. inner model) and their 95% bootstrap
CIs.
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FIGURE 2.17: Estimated path coefficients by role and 95% CI after
1000 bootstrapping

It is interesting to note how Off_phase and Def_phase generally have the highest
path coefficient (in absolute value) on the performance composite indicator. Basi-
cally, movement LV has the lowest path coefficients versus both Off_phase and Def_phase,
in some cases also not statistically significant (e.g. movement versus Def_phase for
FW). Also defending towards Def_phase has very low correlations: in this case only
CB and MF have a real impact (greater than 0.15); for FB instead this coefficient is
not significant. In every case, for each group of path coefficients, there are clear dif-
ferences between the roles. Below, there are some specific comments for each path:

• skill → Off_phase: this is the most equilibrated path among roles, in fact it
ranges from 0.2 of midfielders to 0.28 of wings.

• skill → Def_phase: we can see here how the differences are much greater than
the previous one. skill has the highest correlation with Def_phase for FB (almost
0.4) while the lowest for MF.

• power → Off_phase: this has the highest value for CB, MF and OM.

• power → Def_phase: power is crucial for the Def_phase performance of FW and
OM.

• Off_phase → performance: here we can see how the composite Off_phase is very
high (greater than 0.45) for all roles, with a peak greater than 0.7 for FB (this
is the only strange estimate, which could be investigated in a future research
project, since FB is not properly an offensive role). Other roles with a value
greater than 0.5 are WG, OM and FW (the typical offensive roles).

• Def_phase → performance: here we can see how the composite Def_phase is
quite high (greater than 0.35) for all roles, with a peak greater than 0.5 for CB
and MF (i.e. the only two where it has a significantly greater impact than the
Off_phase).
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• movement → Off_phase: athletic abilities, as said before, do not have a very high
impact for any roles in the Off_phase except for the FB (which seems right, since
they typically run along the wing of the field).

• movement → Def_phase: here, estimates are slightly higher than the previous
case, and also in this situation FB has the highest correlation.

• mentality → Off_phase: this set of abilities is important in the Off_phase for all
roles, with a peak for MF and CB (path estimates greater than 0.3).

• mentality → Def_phase: for the Def_phase, mentality abilities are important for
almost all roles (path greater than 0.3), except for FB and CB, with a slightly
lower path (still greater than 0.2).

• defending → Def_phase: strictly defending abilities are important only for MF and
CB, as expected.

• attacking → Off_phase: also in this case, strictly attacking abilities have the high-
est impact for FW on the Off_phase (greater than 0.3).

Since the more equilibrated values (the role with less differences in path coefficients
from the other ones) belong to the MF model, an in-depth analysis and a more accu-
rate validation of this one is presented in the following subsection.

In-depth analysis: the midfielders’ model

The midfielder’s PLS-SEM takes into account just 621 players from the full dataset.
After the bootstrap validation, its output is presented in Fig. 2.18 (note that it has
the same logic for its interpretation as Fig. 2.13).

Unlike the initial full model, it is immediately clear that all path coefficients (i.e.
correlations, for the inner model) and loadings (for the outer model) are significant
and concordant. The midfielder has a higher weight for the Def_phase (0.53) than
the Off_phase (0.47) on the global performance. For both Def_phase and Off_phase,
mentality is the LV with highest impact, while movement is the lowest.

Compared to the benchmark overall indicator from EA Sports, this new specific
indicator improves its correlation a lot (0.93 versus the 0.65 of the full model). It
also has a good GoF index (0.76) after the bootstrap validation. In order to evaluate
the predictive power of this model, a 5-fold cross-validation (i.e. the default value)
was performed and in Fig. 2.19 we can see its output for each PC (i.e. principal
component, that works as MV) of the composite performance indicator. All predic-
tions follow a strong linear relationship with the actual values, except for defcomp1
and offcomp3 (i.e. the first PCs of movement): they have a poor correlation between
the actual and predicted values, confirmed from their high prediction error indices
(Tab. 2.3); furthermore, recall how in Fig. 2.18 movement, despite its significance,
has a very poor impact on Off_phase and Def_phase (i.e. path coefficients less than
0.1). Despite our goal was to create a measuring model and not a predictive one, for
completeness the power of prediction was compared with a benchmark model, such
as GSCA [83], and in Tab. 2.3 we can see the MAE and RMSE (i.e. respectively mean
absolute error and root mean squared error, defined from the difference between
predicted and actual values, [99]) for each MV of the endogenous (such as Off_phase,
Def_phase and performance) in these two frameworks.

In Tab. 2.3, in bold are the PCs whose MAE (RMSE) index is lower in the target
(PLS-SEM) than the benchmark: following the literature [71, 121], since there is an
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FIGURE 2.18: Output of the midfielder PLS-SEM

equal proportion of PCs (MVs) whose MAE (RMSE) is lower in the target model (6
on 12), it can being reasonable to affirm a medium predictive power for PLS-SEM in
the MF player’s role.

Comparison of the models

As the final result of our analysis, a comparison among the different models per role
was done, by considering the GoF index and the correlation with the overall indicator
from EA Sports: the results are shown in Tab. 2.4.

All PLS-SEMs by player’s role have a GoF greater than or equal to that of the full
model, the highest is that of WG (0.79). Hence, every model has a good value of the
GoF. Concerning instead the correlation with the well-known overall indicator from
EA Sports, all roles have a significant higher value (from 0.86 for CB to 0.97 for WG
and OM) than considering the full model (0.65): this is crucial, since it supports the
confounding function of players’ role. In this case, heterogeneity observed among
roles let us to improve in a relevant way models’ performance result.

2.3 Chapter conclusion

Summarising, in the first part of the chapter the PLS-SEM features have been de-
scribed. Then, an in-depth analysis about PLS-SEM inner and outer model has been
provided, followed by some measurement and structural model assessments. In
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FIGURE 2.19: Midfielder PLS-SEM: actual vs predicted (standard-
ized) values for PCs of performance

TABLE 2.3: PLS-SEM vs GSCA for MF player’s role

MV MAE (PLS-SEM) MAE (GSCA) RMSE (PLS-SEM) RMSE (GSCA)

offcomp1 0.3074 0.2553 0.3899 0.3277
offcomp2 0.3352 0.2950 0.4182 0.3686
offcomp3 0.7065 0.6681 0.9388 0.8828
offcomp4 0.4789 0.4935 0.6000 0.6177
offcomp5 0.2277 0.3199 0.2863 0.4073

defcomp1 0.7153 0.6864 0.9509 0.9098
defcomp2 0.4401 0.3944 0.5542 0.4976
defcomp3 0.2153 0.3314 0.2722 0.4259
defcomp4 0.5432 0.5578 0.6856 0.7045
defcomp5 0.4097 0.4276 0.5133 0.5311

perf1 0.1607 0.3130 0.2030 0.3969
perf2 0.1729 0.1022 0.2229 0.1285

following, the so called "extension" phases of a PLS-SEM analysis have been pre-
sented, for example the different approaches in a higher-order model, in order to
obtain a higher level of abstraction; in addition, evaluating the importance to take
into account moderating effects and heterogeneity in the data, in order to avoid mis-
interpreting in the final results. Starting from that preface, in the second part of the
chapter an exploratory application has been developed, with the objective to mea-
sure football players performance.

The preliminary point of this application were the EA Sports experts, which are
the ultimate authority on soccer performance measurement: they constantly main-
tain a database of realistic players’ performance attributes resulting from careful and
systematic data collection. According to the experts, performance variables make
up several broader, theoretical dimensions. The initial part of this research was ded-
icated to a Partial Least Squares Structural Equation Modeling (PLS-SEM) consider-
ing all the players: it had a bit of incoherence (e.g. difficulty of interpretation, neg-
ative loadings and weights) in some latent variables (LV) and a medium correlation
with the Electronic Arts (EA) overall; then, considering the observed heterogeneity
as a possible confounding cause, the leagues and different roles have been taken into
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TABLE 2.4: PLS-SEM comparison by player’s role

Role n GoF Corr. with EA overall

CB 524 0.77 0.86
FB 732 0.76 0.90
MF 621 0.76 0.93
OM 176 0.78 0.97
WG 201 0.79 0.97
FW 408 0.78 0.95

Full 2662 0.76 0.65

Legend: central backs (CB), full backs (FB), midfielders (MF), offen-
sive midfielders (OM), wings (WG) and forwards (FW)

account: the model was replicated for each different league and it revealed only very
low differences (e.g. maximum non-overlapping rate of 8% between the English
Premier League and Spanish LaLiga) in the estimates for both inner and outer mod-
els; furthermore, the test of Klesel et al. accepted the hypothesis of equality among
leagues for the variance-covariance matrices of the LVs: hence, the league does not
seem to be a confounding factor. Considering players’ roles, the output changes:
here, differences in the path estimates are evident across all roles (non-overlapping
rate maximum at 50%), especially between opposite positions (e.g. central back vs
forward or full back vs forward), which is also confirmed from the test of Klesel
et al. (p-value < 5%); furthermore, considering these models by roles, it’s right to
underline both their good goodness of fit (GoF) and a considerable increase in the
correlation with the benchmark index (i.e. overall). Despite was no the main goal
of this application, also an in-depth analysis of the midfielder (MF) model was pre-
sented, evaluating its predictive power compared with the benchmark (GSCA): it
showed that the PLS-SEM in this framework had a medium predictive power.

Considering the path coefficients by role (Fig. 2.17) and their bootstrap valida-
tion, the results are quite sensible also from a logical point of view; only for FB (a
typically more defensive role) it was noticed a too high value for Off_phase on per-
formance (more than 0.7), despite a very low estimate for Def_phase (0.3).Maybe this
could be due to the influence of some offensives full backs, but in any case for fu-
ture research it should be interesting to carry out a specific confirming composite
analysis (CCA, [42, 119, 72]), in order to improve and further validate the model:
for example, by tacking in consideration possible collinearity problems, or making a
predictive validity, for example evaluating better and improve the predictive power
of defcomp1 and offcomp3 for the midfielder PLS-SEM, or considering the procedure
of the Weight PLS (WPLS) algorithm [37] when using the PLS technique for assess-
ment. Other interesting issues for future projects could be to take into consideration
unobserved heterogeneity among players, maybe using a PLS-POS algorithm [4],
or using this indicator as starting point to improve other existing football analytics
models (e.g. the expected goal model).

Overall, reminding that the core of this application was to create a players’ per-
formance measuring model and not a predictive one, the presented research tried to
create an innovative model for players’ performance and at the same time build two
other interesting indicators, Off_phase and Def_phase, employing a Third-Order PLS-
SEM approach, with the objective of helping football policy makers in an impartial
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evaluation of their players, specific for each role. Another advantage derived from
this PLS-SEM approach is the possibility to split performance into its sub-areas, in
order to study in-depth the players’ condition. In the next chapter you could see the
forward steps of this application.
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Chapter 3

PLS-SEM insight: CTA and CCA

In this chapter we will make an in-depth analysis about two important issue that
emerged in the Chapter 2: the choice about reflective-formative constructs and a
more solid method to confirm and validate the model. It has been thought to ded-
icate a chapter due the relevance of these topics for PLS-SEM and because we have
dedicated one application them; in fact the chapter is organised as follow: we will
talk about the debate among reflective-formative constructs and the solution pro-
posed (i.e. the CTA analysis) in Sec. 3.1, whereas in Sec. 3.2 we will talk about
the confirmatory composite analysis (CCA). Finally, the extension of our application
proposed in the previous chapter is presented in Sec. 3.3, followed by a conclusion
of the chapter in Sec. 3.4.

3.1 Reflective vs Formative constructs: the CTA analysis

As seen in the previous chapter, PLS-SEM for its own measurement model allows
two types of constructs, respectively reflective and formative: the first one implies
that the LV exists independently from the measures used (i.e. causality from con-
struct to items), whereas the second is determined as a combination of its own indi-
cators (i.e. causality from items to construct) [15, 14]. Although PLS-SEM represents
a good method for estimating complex cause–effect-relationship models for many
scopes, as already introduced in this thesis there is a lack in some part of its theory:
in particular, there are just few works relying the assessment of using formative mea-
surement models. While for reflective constructs exist several tests to assess their
reliability, for what concern formative constructs researchers are just basing on the-
ory and experts opinion, since the classical procedures to assess reflective constructs
(e.g. confirming factor analysis and internal consistency evaluation) are not suitable
for the formatives [55]. These problems have caused by a measurement model mis-
specification: as consequence, this can lead a bias in the inner model estimation and
lead to incorrect assessments of relationships in PLS-SEM [64].

In order to overstep that limits, some researchers stressed this crucial point: in
particular some of them have applied the confirmatory tetrad analysis (CTA) by
Bollen [10] for drawing conclusions about the appropriateness of using formative
measurement models as compared to reflective ones [64], that we will face in Sec.
3.1.1.

3.1.1 In depth-analysis: the CTA-PLS

The CTA-PLS module is a tool developed for the smartPLS software [108] that facil-
itates the evaluation of cause–effect relationships for latent variables and their spec-
ification of indicators in measurement models. Before proceeding we must specify
what we mean with "tetrad": a tetrad τ is the difference between the product of two
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pairs of covariances. For instance, the six covariances of a block of four MVs permit
the formation of three tetrads:

τ1234 = σ12σ34 − σ13σ24

τ1342 = σ13σ42 − σ14σ32

τ1423 = σ14σ23 − σ12σ43

(3.1)

Take in consideration that, while the construction of tetrads like in (3.1) requires
four indicator variables at a time, CTA is also applicable to measurement models of
more or less than four indicators [13]. At the beginning, the CTA was introduced
in CBSEM applications ([12], CTA-SEM): these authors propose the concept of van-
ishing tetrads using a covariance (correlation) data matrix to complement standard
procedures of model evaluation, and provide methods for selecting model-implied
non-redundant vanishing tetrads and significance testing. In particular, the concept
of vanishing tetrad is important also for the successive CTA-PLS, so we have to make
clear this point: a vanishing tetrad equals zero and all model-implied non-redundant
tetrads vanish in reflective measurement models. In this sense, researchers devel-
oped the following hypothesis test:

H0 : τ = 0
H1 : τ ̸= 0

(3.2)

Following the hypothesis test in (3.2), if the test supports H0 (i.e. non-significant test,
pvalue > 0.05), it involves vanishing tetrads, implying a reflective measurement
model; otherwise, if the test is significant, it suggests us a formative measurement
model.

CTA-PLS is born following the confirmatory approach of testing model-implied
vanishing tetrads and the application of CTA [12] to help distinguish between for-
mative and reflective measurement models in PLS path modeling. Although CTA-
PLS uses a similar evaluation process, the approach differs from CTA-SEM for PLS
methodological assumptions in both the single tetrad testing approach and the si-
multaneous tetrad testing procedure [64], infact:

• CTA-PLS builds on the statistical test for every single model-implied vanishing
tetrad. To overcome the limitations regarding distributional assumptions, it
includes a bootstrapping routine [11].

• Results for the single non-redundant vanishing tetrad significance tests pro-
vide a basis for choosing whether a reflective approach does not conform to
the empirical data. A rejection of the reflective mode provides support for a
formative indicator specification.

We must take in mind that neither CTA-SEM nor CTA-PLS are applicable for cor-
relations (covariances) close to zero in the measurement model, so in the original
correlation (covariance) matrix of MVs [12].

Since in CTA-PLS all tests are made for all tetrads in each block of MVs, a mul-
tiple testing problem is involved: in order to deal with this issue, a Bonferroni ad-
justment of the significance levels is used. It assures that the error rate does not
exceed the level α for all the n desired tests; the non-parametric nature of the Bonfer-
roni approach meets the PLS assumptions. In particular, the resultant test statistic,
asymptotically approaches a χ2 distribution with the degrees of freedom equal to
the number of tested tetrads. So, Bonferroni approach lets to compute simultane-
ous confidence intervals for multiple tetrad tests: when a confidence interval for
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a difference does not include zero, the H0 of (3.2) is rejected. Testing with confi-
dence intervals has the advantage that they give more information by indicating the
direction and something about the magnitude of the difference; in addition, if the
hypothesis is not rejected, the power of the procedure can be measured by the width
of the interval [64].

Although some differences we observed, the practical application of CTA-PLS is
similar to the one of CTA-SEM [12]. Now, in order to have a clearer idea than before,
the CTA-PLS routine is presented:

1. First, it forms and computes all vanishing tetrads for the measurement model
of a given latent variable. In general:

Cn,4 =
n!

(n − 4)! ∗ 4!
(3.3)

By (3.3) are computed the number of sets of four variables, each resulting in
three vanishing tetrads for measurement models with n MVs for each block
(3.1); so, the total number of tetrads for each one is:

#τ = 3 ∗ Cn,4 (3.4)

Despite CTA-SEM, it is interesting to highlight that a LV with less than four
MVs require an inclusion of indicators from another one to form a set of four
MVs to perform CTA-PLS.

2. In the second step, CTA-PLS identifies model-implied vanishing tetrads; how-
ever, we must just take in mind that the expectations for formative indicator
specifications is different: none of the tetrads shall vanish in formative mea-
surement models.

3. In order to improve the successful steps, at this point CTA-PLS eliminates re-
dundant model-implied vanishing tetrads: it happens when the same pair of
covariances appears in two model-implied vanishing tetrads.

4. At this point, it performs a statistical significance test for each vanishing tetrad,
determining whether the value is significantly different from zero. CTA-PLS
follows, as introduced before, some Bollen’s suggestions, like using a bootstrap
routine [11]. Infact, by generating a high number of bootstrap subsamples (e.g.
5000) and computing their relevant tetrads allows to obtain the bootstrap es-
timated standard error (SE) for every tetrad, and the t-value of the Student’s t
distribution (e.g. tobs = τ/SE(τ)). The structure of the hypothesis test was in-
troduced in (3.2). Bootstrapping provides a non-parametric alternative but we
must account for the problem that the generation of the data follows the alter-
native hypothesis (H1). An examination of the statistical correspondence be-
tween tests of significance and confidence intervals when the null hypothesis
concerns a particular parameter value allows addressing this problem: specif-
ically, bootstrapping confidence intervals is an appropriate approach for this
purpose [64]. In addition, the bias correction of the bootstrap confidence inter-
val provides an appropriate means to test the model-implied non-redundant
vanishing tetrads in CTA-PLS, as specified in the following:

tobs − bB ± vB
1/2z1−α/2 (3.5)
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where bB is the bootstrap estimates of the bias and vB is the bootstrap estimates
of the variance. Only if the corresponding (i.e. 1 − α, two-tailed) confidence
interval includes (does not include) the parameter (i.e. the zero), an acceptance
(rejection) of H0 is established.

5. In the last step, CTA-PLS evaluates the results for all model-implied non re-
dundant vanishing tetrads per measurement model by accounting for multi-
ple testing issues. It assess the conformity of a reflective indicator with the
empirical data. A reflective measurement model does not meet the empiri-
cal data if at least one of the model-implied vanishing tetrads is significantly
different from zero. CTA-PLS employs a procedure for testing n hypotheses
Hp1, Hp2. . . , Hpn with test statistics T1, T2. . . , Tn for each LV (i.e. measurement
model). Thus, in order to take into accounting for multiple testing issues, the
probability of rejecting the null hypothesis requires adjustment [64]. The cor-
rection used by CTA-PLS for this problem is the Bonferroni adjustment [11],
which consists of rejecting Hi, for any i = 1, ..., n, if the associated statistic test
Ti is significant at the α′ = α/n adjusted level of the test, where n is the num-
ber of hypotheses to be tested. For instance, if we have 5 vanishing tetrads to
test, and α = 0.05, then for each individual test we should use in (3.5) a criti-
cal value α′ equal to 0.05/5 = 0.01. The procedure finishes with a sensitivity
analysis, a reliable foundation for evaluating the analytical results [12].

As summary, we can say that CTA-PLS is an important tool for testing theoretical
concepts and for an empirical evaluation of the mode (i.e. reflective or formative) of
the measurement models; when we apply it, there are three practical steps to follow:

• A theoretical a-priori specification for each outer model (i.e. for each LV), gen-
erally defined by experts.

• The integrative CTA-PLS evaluation of measurement models, in order to make
consistent CTA-PLS with PLS-SEM assumptions.

• The practical application by a software (for example, smartPLS) that includes
the CTA-PLS module.

In any case, it should be better also a posterior re-examination of the constructs, in
order to assess possible misspecifications of the measurement models. Infact, re-
searchers recommand a-priori theoretical specification and posterior re-examination
along with empirical data, that are essential to better understand the structure of the
outer models [64]. In particular, from a practical point of view, after setting all the
measurement models in a reflective way, then a CTA-PLS can be applied in order
to understand what LVs are confirmed as reflective constructs, and what are dis-
confirmed, moving over a formative one [126]; then, after that it can be applied the
PLS-SEM using the type of constructs provided by the CTA-PLS.

Concluding, the CTA-PLS allows to evaluate the direction mode for each mea-
surement model with respect to empirical data but switching the mode of outer
models (e.g., from reflective to formative) without further consideration, however,
it does not represent the final result of this analysis, unless additional supporting
theoretical or conceptual reasoning provides clarification.
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3.2 The CCA analysis

Here is presented a guideline to the more recent confirming composite analysis
(CCA, [119, 72]). This procedure is a systematic methodological process for con-
firming measurement models in PLS-SEM; respect to the well known exploratory
factor analysis (EFA) and the confirmatory factor analysis (CFA), CCA includes a
series of steps to confirm both reflective and formative measurement models (Tab.
3.1). CCA is the most suitable and complete tool to confirm and validate a PLS-SEM
model despite some years ago the most used approach by researchers was the fol-
lowing: first, a EFA analysis was recommanded, in order to examine the underlying
structure of multi-item scales, following by a CFA [72].

TABLE 3.1: A brief comparison between EFA, CCA and CFA

Approach EFA CCA CFA

Total Variance X X -
Common Variance X - X
Exploratory X X -
Confirmatory - X X

Early applications of EFA were based on the common factor model, which vari-
ables are assumed to be a function respectively of common, specific and error vari-
ance [17, 67]: common variance is the indicator’s variance that is shared with all
other indicators in the analysis, specific variance is the indicator’s variance that is
only associated with the indicator, while error variance is the indicator’s variance
that is due to unreliability, bias, or randomness. EFA assumes that any indicator
may be associated with any factor. However, EFA only needs to be applied when
there is no established theory describing the underlying constructs for a set of MVs
[72].

For what concern CFA, it was introduced as assessing measurement quality for
CBSEM models, as confirmatory factor analysis; CFA is both a qualitative and sta-
tistical process suitable to evaluate some relevant measures, such as construct reli-
ability, discriminant validity or goodness of fit. In summary, by applying CFA on
CBSEM, a researcher is testing the hypothesis that a proposed theoretical relation-
ship exists between the observed variables (MVs) and their underlying latent con-
structs. The final objective is to confirm the measurement properties of a set of MVs
for measuring a specified latent construct. In the early year, also for PLS-SEM was
applied the CFA analysis to measurement model confirmation, but, since there are
slightly differences between CBSEM and PLS-SEM (i.e. as already underlined), some
researchers proposed a new technique, more suitable for PLS-SEM: as consequence,
it is born the concept of CCA as a process for confirming measurement models in
PLS-SEM [80].

So, from a practical point of view, the two main possible approaches are the prin-
cipal axis analysis, which extracts factors using only common (shared) variance (EFA
and CFA, Tab. 3.1), whereas the other one is the principal component analysis (PCA),
which extracts factors using total variance (EFA and CCA, Tab. 3.1).

The three methods have similarities but many differences. For instance, the sta-
tistical objective of EFA is data reduction through exploration of response patterns,
while for CCA and CFA is confirmation of measurement theory. Again, EFA often
ends with the identification of factors, while CCA and CFA begin with proposing
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theoretical constructs to be confirmed, and almost always moves on to structural
modeling after the composite confirmation [72].

In order to validate the measurement model, CCA drives us with some steps,
depending if we are working with reflective or formative indicators. By [72], we try
to guide you by the fundamental steps to evaluate and validate the outer model, in
these two cases:

• Reflective measurement ⇒ as seen before, in this case indicators are seen as a
manifestation of the empirical surrogates (proxy variables) for the latent vari-
able. In order to assess them, CCA suggest us these following steps:

1. MVs preliminary check: we must assess the indicator loadings (i.e. λ,
the root squared of the communalities) and their significance; more pre-
cisely, loadings must be equal or greater than 0.7. Take in consideration
that loadings in the range of 0.4 < λ < 0.7 are acceptable if compos-
ite reliability and the AVE index meet their thresholds [126]. In order
to test λ significance, since does not exist a closed form solution for the
confidence intervals, we suggest a bootstrapping procedure to obtain t-
statistics ([68]). Indicator loadings with confidence intervals excluding
zero are statistically significant.

2. Indicator reliability: it can be measured by the square of each indicator
loading with its own LV; this index provides a measure of the amount of
variance shared between the MV and its associated construct [9].

3. Composite reliability: at this point, it is very important to check the uni-
dimensionality (i.e. the coherence) of each block of MVs. We can do it in
different ways:

PCA: making a principal component analysis (PCA) on each block and
checking if we have just one eigenvalue greater than 1.

Cronbach’s alpha: the rule of thumb of this criteria is that it must be
equal or greater than 0.7.

Composite reliability: also this other index must be equal or greater than
0.7. Because indicators are not equally reliable, composite reliability,
which is weighted, it is more accurate then Cronbach’s alpha statistic,
that is unweighted ([69]).

We have to make attention if a reliability index is 0.95 or higher, in this
case the individual items are measuring the same concept, and are there-
fore redundant. If a block is not uni-dimensional we could proceed in
different ways: we could remove the correspondent MVs, otherwise we
could split the multidimensional block in different unidimensional under-
blocks. Eventually, as extreme solution, we could adopt instead a forma-
tive approach.

4. Convergent validity: it can be measured by the average variance ex-
tracted index (AVE), obtained by averaging the indicator reliabilities of
a construct. It quantifies the average variance shared between the LV and
its MVs. AVE should be 0.5 or higher.

5. Discriminant validity: this step has the goal to ensure that a reflective
construct has the strongest relationships with its own indicators. It can be
assessed using cross-loadings, Fornell-Lacker criterion [61] or the heterotrait-
monotrait ratio of correlations (HTMT, [77, 70]). The first procedure pro-
vides that the outer loading of an item should be greater on its respective
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latent variable than its cross-loadings on other latent variables. Accord-
ing to Forner–Lacker criterion, the square root of AVE, of each of the latent
variable, should be greater than its correlation with other latent variables.
Finally, the HTMT ratio is the average of the heterotrait-heteromethod
correlations (i.e, the correlations of indicators across constructs measuring
different phenomena) over the average of the monotrait-heteromethod
correlations (i.e. the correlations of indicators within the same construct).
In particular, if HTMT < 0.9 [127, 42] or its own bootstrap confidence in-
terval does not contain 1, then discriminant validity has been established
between two reflective constructs [77].

6. Nomological validity: it is an additional method to assess construct va-
lidity; in practise, it works correlating the LV score of each construct with
one or more other concepts (LVs) in the nomological network. This frame-
work is a sort of representation of the interrelationships between con-
cepts, for example in psychological test [50].

7. Predictive validity: it evaluates how well a construct score predicts on
some outcomes (i.e. criterion measures) and it is measured by correla-
tion. In particular, predictive validity involves using the construct score
to predict the score of a criterion variable that is collected at a later point
in time. Nevertheless there is not a unique tested method of predictive
validity, construct invariance in PLS-SEM measurement models can be
tested by applying the MICOM procedure [78, 123]. For instance, con-
struct invariance is most often applied with cross-cultural studies and it
can be assessed with MICOM.

• Formative measurement ⇒ in this case, LVs are formed (i.e. caused) from a
set of MVs. Formative indicators cannot be evaluated at the same manner of
the reflective ones and so they must be interpreted in a different way [38]. It
will be presented in the following what CCA recommands:

1. Convergent validity: as written by [70], it is the extent to which the for-
mative construct is positively correlated with a reflective measure(s) of
the same construct using different MVs. The relationship between multi-
item formative LV and the reflective measure of the same construct is usu-
ally examined using correlation. Convergent validity can be measured on
the size of path coefficient between two constructs; in particular, [70] rec-
ommend a minimum path coefficient of 0.70, and in general, the larger
its size, the stronger is its indication of convergent validity. In alternative
to this criterion, we could check if a revision of the theoretical formative
LV is possible by removing, revising, adding one or more MVs. All this
process of convergent validity is also referred to as redundancy analysis
from [38].

2. Indicator multicollinearity: we remind that for formative LVs, high cor-
relation between indicators creates problems of multicollinearity. In order
to see if this problem is present we can check the VIF (i.e. variance infla-
tion factor) index: if its value is equal or lower than 5 (i.e. use 3 as thresh-
old for a more conservative approach, [72]) multicollinearity is not a prob-
lem. When multicollinearity holds, we can evaluate whether one or more
MVs can be removed. But we must pay attention in this case, in fact a
formative indicator should never be eliminated based solely on statistical
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criteria. Another option to solve this problem is to develop higher-order
constructs that are supported by measurement theory [3].

3. Size and significance of indicator weights: if the previous steps indi-
cate the formative measurement model meets recommended guidelines,
now we must examine the size and significance of the indicator weights.
The amount of contribution (relevance) of the MVs is based on the size
of the outer model weights; larger weights indicates a higher contribu-
tion. Since PLS-SEM is a non-parametric statistical tool, significance of
the outer weights is determined using bootstrapping. In general, the level
of statistical significance is α = 0.05. If an outer weight relying a MV is
non-significant (i.e. pvalue > 0.05) then it must be checked its outer load-
ing: if it is statistically significant then the MV can be retained, otherwise
it can be removed from the outer model [126].

4. Contribution of indicators: now, in order to evaluate this point, we can
take in consideration size and significance of the loadings. In particular,
one loading is considered relevant in forming the LV when it is greater
or equal to 0.5 and statistically significant. If it does not hold, we can
remove or retain the LV based on a theoretical assessment of its relevance
obtained from experts’ knowledge.

5. Assess predictive validity: this step assesses the extent to which a con-
struct score predicts scores on some outcomes measure. Note that predic-
tive validity involves using the LV score to predict the score of an outcome
LV that is collected at a later point in time, like for the reflective constructs.

Structural model assess ⇒ at this point, after evaluated our PLS-SEM measurement
model by the CCA approach, we are ready to assess the structural model, by follow-
ing these relevant steps [72]:

1. Evaluate structural model collinearity: like for the formative constructs, also
for the inner model we must evaluate the presence of possible multicollinearity
problems. Also in this case VIF values can be examined and if they are under
the threshold of 5 then multicollinearity is not a problem (i.e. with 3 more
conservative threshold, [126]).

2. Size and Significance of Path Coefficients: after verified the first step, now
we must check the size and significance of the path coefficients; they are stan-
dardized values that may range between +1 and −1: the closer they are to
0 , the weaker they are in predicting endogenous LVs. Opposite, the nearer
they are to |1| the stronger they are in prediction. In order to validate our path
coefficients, there is a bootstrap validation (i.e. they are significance if their
confidence interval does not contain zero).

3. Model goodness (in-sample prediction): since our inner model is a substan-
tially a multiple regression model, the most often used metric for in-sample
prediction for all endogenous LVs is R2. We must pay attention with this met-
ric, because in multiple regression R2 is proportional with the number of inde-
pendent variables, so we risk to overfit the performance of our model. For this
reason, some researchers also examine the adjusted R2, useful when we have
too many nonsignificant predictor constructs in the structural model [74]. Ad-
justed R2 improves the classical R2 value downward based on the sample size
and the number of predictive LVs.
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4. Effect size (in-sample prediction): this metric measures the in-sample predic-
tive ability of each independent LV. For example, effect size (i.e. f 2) for a given
predictor is computed as the difference between two R2 index: the first is the
R2 computed in a new model without that predictor, while the second R2 is
computed for the full model. We can interpret its value as follow [46]:

• 0.02 ≤ f 2 ≤ 0.15: small effects size.

• 0.15 ≤ f 2 ≤ 0.35: medium effects size.

• f 2 ≥ 0.35: large effects size.

5. Predictive relevance (primarily in-sample prediction): in this step we can
compute the third assessment metric, the Q2 value, also referred to as blind-
folding [62, 125]. We can interpret its value in this manner:

• Q2 ≪ 0: not meaningful value (i.e. lack of predictive relevance).

• Q2 ≫ 0: meaningful value.

And in particular:

• 0.25 ≤ Q2 ≤ 0.5: medium predictive relevance.

• Q2 ≥ 0.5: large predictive relevance.

6. PLS predict (out-of-sample prediction): this last step is maybe the most im-
portant of our work, since it let us to validate our inner model. In fact all met-
rics seen until now are useful in evaluating the predictive power of a model
based on in-sample [118]. The main weakness of in-sample prediction is that it
uses the same sample as training and test dataset, with very high risk of over-
fitting (i.e. our model fits too well for the current dataset, but if we try to test
it with other data we obtain very poor prediction). The out-of-sample predic-
tion for PLS-SEM was recently proposed [122]: it consists on estimating our
model on a training sample, then using results of that model to predict other
data in a separate test sample. Then, this PLSpredict function [121] has been
implemented on the well-known smartPLS software [108] and also on some
open source tools such as R. PLSpredict package lets us to choose some op-
tions for validating the model, in particular we can select different proportions
for training and test set if we want to divide our whole dataset in two part,
or we can apply a k-fold cross validation, selecting the number k of folds. In
general, the recommended minimum size for the holdout sample would be
n = 30 ([72]) and in case n < 30 then we should interpret results cautiously.
For the assessment of our model, in out-of-sample prediction we can use some
well-known statistics:

• MAE (mean absolute error): it evaluates the average magnitude of the
errors in a set of predictions without considering their direction. It is pre-
ferred to refer this index if the prediction errors distribution is unbalanced
[121].

• RMSE (root mean squared error): it measures the square root of the aver-
age of the squared differences between predictions and the actual values.

Furthermore, in order to have more robust results, it could be useful to com-
pare RMSE and MAE to a naive values obtained by a benchmark (for example,
a linear regression model, i.e. LM). A LM predicts each of the endogenous LV
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from all indicators of the exogenous ones. But we must take in consideration
that LM does not include the PLS-SEM model structure [53]. Comparing MAE
and RMSE statistics between PLS-SEM and our benchmark, we could interpret
results as follow [71, 121]:

• When the RMSE or MAE index is higher for all PLS-SEM outcomes com-
pared to the benchmark ⇒ lacks predictive power.

• When the RMSE or MAE index is higher for the majority of our PLS-SEM
outcomes compared to the benchmark ⇒ low predictive power.

• When the RMSE or MAE index is higher for an equal or minority propor-
tion of our PLS-SEM outcomes compared to the benchmark ⇒ medium
predictive power.

• When the RMSE or MAE index is higher for none of our PLS-SEM out-
comes compared to the benchmark ⇒ high predictive power.

Summarizing, PLS-SEM approach can perform confirmatory and assessment anal-
ysis of reflective and formative composite structures via CCA, which broadens the
applicability of both PLS-SEM and CCA. In addition, CCA guidelines can be applied
for the higher-order constructs [42, 117]. Despite EFA and CTA, CCA introduced the
evaluation and confirmation of formative constructs, and it is the best choice when
prediction is the statistical objective of the research (i.e. variance extracted from ex-
ogenous LVs in CCA is focused on the prediction of endogenous ones) [73]. Some
applications on empirical data have been recently developed in order to apply a
CCA on different PLS-SEM frameworks, also considering hierarchical constructs,
showing the reliability of this procedure [42].

3.3 The application

This application aims to use a computationally intensive nonparametric approach
with an original application in the sport field, creating a new composite indicator
by role (the PI overall), starting from a Third-Order PLS-SEM measurement model
presented in the previous chapter, taking into consideration both statistical evidence
and expert opinion. As recall, PLS-SEM is based on bootstrap sample replications:
infact bootstrap confidence intervals provide additional information on the stability
of coefficient estimates and in the following we will use the Bias-Corrected and ac-
celerated (BCa) method [75] for constructing them. By this study, in order to take
into consideration the formative or reflective nature of each first order latent vari-
able, a Confirmatory Tetrad Analysis (CTA) will be adopted, whereas a formative
structure was assumed for higher order constructs; finally, in order to improve the
quality of the model a more recent Confirmatory Composite Analysis (CCA) will be
applied, including a predictive validity evaluation with the benchmark indicator EA
overall and some performance quality proxies, such as the player’s market value and
wage. Data and model description are presented in Sec. 3.3.1, whereas final results
are given in Sec. 3.3.2, 3.3.3 and 3.3.4. An in-depth analysis relying goalkeepers is
proposed in Sec. 3.3.5.

3.3.1 Data and application design

The dataset used in this study is maintained by Electronic Arts (EA), a video game
company (FIFA series) and available online1. Software developers are constantly

1www.sofifa.com

www.sofifa.com
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maintaining a database with performance measures of soccer players and the pro-
cess of performance measuring can be described as a professionally conducted sur-
vey of an interested audience. The dataset is a free available online platform (Kag-
gle2), with data concerning the beginning (September) of the season 2021/2022; the
focus has been on all players’ stats from the top 5 European Leagues (Italian Serie A,
German Bundesliga, English Premier League, Spanish LaLiga and French Ligue1).
This Kaggle dataset contains 29 player’s abilities (KPIs), with player’s performance
on a 0-100 scale with respect to different abilities, classified by EA Sports experts into
6 latent traits: attacking, skill, movement, power, mentality and defending (see Tab. 3.2
for more details). The dataset was composed by data relying 2650 players; since on
Kaggle there are only data about the beginning of the season, we took some others
data (i.e. relying December 2021) directly from the sofifa website, in order to apply
the predictive validity analysis (Sec. 3.3.3). In addition, to classify roles, the main
suggestions of football experts have been followed, in order to get the specific role
of each player and customize their performance: central backs (CB), full backs (FB),
midfielders (MF), offensive midfielders (OM), wings (WG) and forwards (FW) [26,
82]; note that goalkeepers have been excluded from the analysis, due to their singu-
larity and because they have specific performance indices [20, 25].

2www.kaggle.com/stefanoleone992/fifa-22-complete-player-dataset

www.kaggle.com/stefanoleone992/fifa-22-complete-player-dataset
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TABLE 3.2: Statistics of the EA Sports KPIs with experts’ classification
for the top 5 European leagues in the 2021/2022 season

sofifa LV Index (MVs) MVs label Mean Std Skew Q1 Q2 Q3

Crossing att1 60.17 14.60 -0.52 50 63 71
Finishing att2 55.39 17.72 -0.32 41 59 70

Attacking Heading accuracy att3 61.90 12.35 -0.26 53 63 71
Short passing att4 69.95 9.06 -0.70 65 71 76
Volleys att5 52.14 16.09 -0.01 39 52 65

Dribbling ski1 68.04 11.81 -0.88 62 70 76
Curve ski2 58.31 15.53 -0.27 47 60 70

Skill FK accuracy ski3 50.30 15.95 0.27 38 48 63
Long passing ski4 63.09 12.09 -0.59 56 65 72
Ball control ski5 70.78 9.27 -0.65 65 72 77

Acceleration mov1 69.58 11.71 -0.49 63 70 78
Sprint speed mov2 69.72 11.61 -0.49 63 70 78

Movement Agility mov3 68.43 12.23 -0.52 61 69 77
Reaction mov4 69.20 9.35 -0.39 63 70 76
Balance mov5 67.76 12.38 -0.50 60 69 76

Shot power pow1 65.61 13.11 -0.62 57 68 76
Jumping pow2 67.29 12.11 -0.46 60 68 76

Power Stamina pow3 69.28 11.60 -0.43 62 70 77
Strength pow4 67.66 12.52 -0.54 60 69 77
Long shot pow5 56.99 16.76 -0.48 45 60 70

Aggression men1 64.73 14.15 -0.59 56 67 75
Interception men2 56.33 20.50 -0.58 39 63 73

Mentality Positioning men3 60.88 15.92 -0.68 52 64 73
Vision men4 62.24 13.42 -0.54 54 64 72
Penalties men5 55.28 13.43 0.14 45 55 65
Composure men6 67.56 10.33 -0.42 61 69 75

Marking def1 56.52 19.06 -0.55 41 62 72
Defending Standing tackle def2 58.18 20.37 -0.67 40 66 74

Sliding tackle def3 55.17 20.71 -0.58 36 63 72

In the PLS-SEM framework, the 29 indices (abilities) are the MVs, whereas the
initial 6 sofifa traits are the LVs (i.e. the first order constructs). As already introduced
before, a hierarchical model is used, but despite the early application presented in
Chapter 2, a mixed two-step (hybrid) approach [41] for estimating the HOCs was
preferred (i.e. it showed some stable results in terms of the BIAS and MSE of the es-
timates, [49]): as recall, a player’s performance was built as an extra-latent construct
of higher (third) order, formed from two extra LVs (second order constructs), namely,
Off_phase (the phase at which a player is in attack, with or without ball possession)
and Def_phase (the moment at which a player is in defense, with or without ball pos-
session) [60]. In particular, the estimation phase for this higher order framework has
followed these steps:
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1. The second order latent variables (Off_phase and Def_phase) have been esti-
mated by a mixed two step approach [41] in formula (3.6). For each one as
regressors have been used the output scores relying the first order constructs,
coming from a previous implementation of the PLS-SEM algorithm using a re-
peated indicators approach (indicated with ξ̂

I
q in the following formula, as a

row vector):
ξII

q = ξ̂
I
qwII

q + δII
q (3.6)

It has been inner structure used in the previous chapter: all first order LVs ex-
cept defending cause the Off_phase, whereas all LVs except for attacking causing
the Def_phase (Fig. 3.1).

At this point, the scores of the second HOCs have been used for the only third
order construct (ξ̂

II
q as a row vector):

ξIII
q = ξ̂

II
q wIII

q + δIII
q (3.7)

Here the block q for the macro composite performance (PI overall) is formed by
two MVs, Off_phase and Def_phase.

In particular, for both (3.6) and (3.7) wq is the column vector of outer regression
weights and δq of error terms, with their conditional expected value assumed to be
zero.

FIGURE 3.1: PLS-SEM: the path diagram of the third-order inner
model

At this point, the analysis followed these steps: the preliminary analysis focused
on the CTA, in order to established the nature of each construct; then the validation
step by the CCA was applied, removing problematic MVs. Finally, following previ-
ous guidelines, a PLS-SEM for each player’s role was implemented comparing their
inner and outer estimates and their performance, by different measures of fit: the
Goodness of Fit (GoF) index [133] and the Standardized Root Mean Square Residual
(SRMR, [72]).

For this research the R software packages csem [99] and seminr [122] have been
used; furthermore, the smartPLS [106] has been adopted for the CTA. We carried out
a bootstrap validation (5000 replications) by using a BCa approach [75] for building
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the confidence intervals (CIs) in order to assess weights and path coefficients. In the
next sections, the results are shown.

3.3.2 The CTA output among each model-role

Following the roles’ classification [82], 6 different PLS-SEMs were estimated, one
for each player’s role. In this phase the goal is firstly to investigate the nature of
the constructs for each model-role: so, a CTA (with 5000 bootstrap samples for con-
structing the Bonferroni adjusted CIs) was adopted to detect the nature of each first
order LV block. As interpretation, we adopted the method proposed by Hair et al.
([75], Chapter 3): if at least one of the nonredundant tetrads is significantly different
from zero, we rejected the reflective measurement model and we assumed a forma-
tive specification. Following the previous criteria, in our case all the LVs for each
model-role can be assumed as formative; for example, in Tab. 3.3 we show the CTA
output for the central back (CB) model in which there is at least one tetrad (for each
LV) that does not contain zero (i.e. does not vanish): 2 for the attacking block, 3 for
the skill, 4 for the movement, 2 for the power, 5 for the mentality and 2 out of 2 for the
defending; keep in mind that for the defending LV we cant’t apply the tetrad, since
this block has just 3 MVs [12]: since all the other LVs are formative, we assumed the
same structure for defending.
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TABLE 3.3: CTA output for the Central Back (CB) model (95% Bonfer-
roni bias corrected bootstrap -two tailed- CIs with 5000 replications)

sofifa LV Tetrad (τ) τ (Sample Mean) CI Low adj. CI Up adj.

att1,att2,att3,att4 2402.45 1626.82 3250.34
att1,att2,att4,att3 1831.78 1012.14 2706.83

Attacking att1,att2,att3,att5 -506.20 -1107.73 90.97
att1,att3,att5,att2 21.19 -607.13 631.96
att1,att3,att4,att5 -281.25 -601.38 39.40

ski1,ski2,ski3,ski4 781.20 126.96 1443.19
ski1,ski2,ski4,ski3 -3694.45 -5339.51 -2163.29

Skill ski1,ski2,ski3,ski5 357.68 -73.05 784.47
ski1,ski3,ski5,ski2 -3872.07 -5256.56 -2571.75
ski1,ski3,ski4,ski5 343.73 -399.71 1110.47

mov1,mov2,mov3,mov4 1181.01 192.33 2171.17
mov1,mov2,mov4,mov3 2166.10 1228.13 3115.84

Movement mov1,mov2,mov3,mov5 3895.69 2640.66 5255.62
mov1,mov3,mov5,mov2 -662.85 -1100.09 -227.10
mov1,mov3,mov4,mov5 -334.97 -1012.18 329.24

pow1,pow2,pow3,pow4 -19.81 -372.25 332.13
pow1,pow2,pow4,pow3 -228.24 -607.10 148.76

Power pow1,pow2,pow3,pow5 101.38 -171.02 391.38
pow1,pow3,pow5,pow2 -2150.94 -3284.02 -1081.29
pow1,pow3,pow4,pow5 -311.94 -634.96 -1.43

men1,men2,men3,men4 3319.12 2165.93 4527.78
men1,men2,men4,men3 3596.57 2478.02 4767.85
men1,men2,men3,men5 1900.04 906.19 2934.41
men1,men3,men5,men2 94.95 -171.85 367.51

Mentality men1,men2,men3,men6 404.02 -216.83 1037.80
men1,men2,men4,men5 1974.28 1083.08 2912.84
men1,men2,men5,men6 306.78 -211.56 846.19
men1,men3,men4,men6 332.29 -239.13 905.82
men1,men3,men6,men5 -2105.95 -3298.68 -956.21

3.3.3 The CCA output

After the results of the CTA, we estimated the PLS-SEM for each player’s role, by
using a formative approach for each measurement model: at this point we are ready
to evaluate each LV, following the CCA guidelines for formative constructs. We
can summarise the MVs removed for each model by role, by following the CCA
suggestions (Tab. 3.4). The CB is the model with the lowest number of MVs removed
(just 4), whereas the wing is the highest one (14).



64 Chapter 3. PLS-SEM insight: CTA and CCA

TABLE 3.4: The MVs removed for each model by role by CCA

Model by role Non-sign. outer weights Non-sign. loadings Multicollinearity

CB def2 mov1 -
mov5 mov2 -

def2 att3 ski5
mov1 men1 def3

FB mov5 men2 -
- pow2 -
- pow4 -

mov5 att3 def2
pow4 mov1 ski5

MF ski2 mov2 -
def3 mov5 -
- pow2 -

att3 mov2 men4
men1 pow2 ski1

OM mov1 - ski5
pow2 - -
ski3 - -

att1 - men3
att3 - men4
def2 - men6
def3 - ski1

WG mov1 - ski5
mov2 - -
mov3 - -
mov5 - -
ski3 - -

def3 mov1 men6
men1 mov2 -

FW mov2 mov5 -
ski1 - -
ski3 - -

Legend: central backs (CB), full backs (FB), midfielders (MF), offen-
sive midfielders (OM), wings (WG) and forwards (FW)

After removing problematic MVs, each model by role has been re-estimated: in
order to evaluate each model assessment, by Tab. 3.5, the sample size, the GoF index
and the SRMR of PLS-SEM by role are provided (introduced in Sec. 3.3.1). If we
look at all the stats, each model by role is better than considering the full model: all
GoFs are greater than 0.8 except for the full model, all SRMRs meet the threshold (i.e.
lower than 0.10) except for the full model. So, also from a global point of view, taking
into consideration the CTA and the CCA analysis for each model-role it improves the
models’ quality and their interpretation.
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TABLE 3.5: PLS-SEM performance by player’s role assessment

Model by role n GoF SRMR

CB 535 0.814 0.094
FB 765 0.856 0.093
MF 626 0.874 0.082
OM 218 0.854 0.085
WG 117 0.886 0.070
FW 389 0.854 0.072

Full Dataset 2650 0.768 0.158

Legend: central backs (CB), full backs (FB), midfielders (MF), offen-
sive midfielders (OM), wings (WG) and forwards (FW)

Now, it is proposed a summary of the outer weights by the radar plot (Fig. 3.2),
that sums up the 6 first order LVs scores by role. Since the previous CCA suggested
removing some MVs, in each radar plot we have some non-continuous segments
or some isolated point (e.g. the skill LV); in any case, we can do some interesting
considerations for each LV:

• Defending: as we expected, CB model gets the highest weight for def3, whereas
for def1 there are similar scores; def2 is present only for OM and FW as might be
expected, since it refers to a standing tackle, an ability mainly used by offensive
players.

• Movement: here we have similar scores for what concern mov4, whereas mov3
has the highest impact for the FB, underlying the importance of the reaction for
this important role. mov5 is significant only for OM, with a poor impact on the
movement performance.

• Power: here it is interesting to underline how CB has the highest scores for 3
items out of 5 and pow1 (shot power) is the most important variable for FW, as
we could expect.

• Mentality: mental skills are becoming more and more relevant in modern foot-
ball for all roles; from our results it emerges that some mental abilities are
significant only for one role (e.g. men1 and men6 for WG), others have simi-
lar scores (men4 and men2) among roles. Again, another interesting evidence
emerges concerning men3 (positioning), that has the most relevant impact for
the offensive roles (FW and OM) and men2 (interception) for the CB: these con-
siderations agree with football experts opinions ([82]).

• Skill: this latent trait supports the classical ball-possession ability, typical for
offensive and play-maker roles; for example we have at the top OM and WG
relying ski2 (curve) and MF regarding ski4. Due to modern football (and their
offensive duties), it is interesting to emphasize how FB is at the top score for
what concern ski1 (the dribbling impact). ski5 is the top variable for the FW
model.

• Attacking: for this group there are similar scores among roles for att1 and att2;
the outer weight of att3 (heading accuracy) confirms that it has the highest im-
pact for the CB model. att4, which refers to short passing, has the top impact for
MF and WG, whereas att5 (volleys) for FW.
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FIGURE 3.2: The PLS-SEM outer weights summary by role

Legend: central backs (CB), full backs (FB), midfielders (MF), offen-
sive midfielders (OM), wings (WG) and forwards (FW)

In addition, Fig. 3.3 shows two summary plots with path coefficients and their
95% bootstrap BCa CIs after 5000 replications, concerning the inner model by role. It
is interesting, by Fig. 3.3a, to note how for all roles except for CB the Off_phase con-
struct has an higher path coefficient on the performance composite indicator (III or-
der construct) than the Def_phase; focusing on the Def_phase indicator, the lowest (but
significant, i.e. they do not contain zero) path estimates concern the typical offen-
sive roles and the FB. The opposite scenario there is if we focus just on the Off_phase
indicator: the highest path estimates that impact on the PI overall are related to the
offensive roles and the FB. Moving our attention towards the links between I and
II order constructs (Fig. 3.3b) we can see differences between each role’s inner esti-
mates, in some case more evident. Below, there are some specific comments for each
path, reading the plot from left to right:

• defending → Def_phase: the defending LV shows the highest path coefficient for
CB (as expected) and similar values for the other roles, except FB (the lowest
value, but statistically significant).

• movement → Def_phase: here, estimates are globally slightly higher than the
previous case, with WG and FB (typical dynamic roles) those have the highest
correlations (i.e. greater than 0.25).

• power → Def_phase: power is crucial for the Def_phase of WG (nearly 0.4).
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• mentality → Def_phase: for the Def_phase, mental abilities are important for al-
most all roles (path greater than 0.25), except for WG, with a path of 0.1, but
significant.

• skill → Def_phase: in this case there are similar scores between MF, OM and
WG. skill has the highest correlations (greater than 0.2) with the Def_phase for
what concern CB, FB and FW.

• attacking → Off_phase: also in this case, strictly attacking abilities have the high-
est impact (greater than 0.25) for offensive roles (OM and WG) except for FW,
that has a similar score of FB and MF. As expected, in this case CB has the
lowest one.

• movement → Off_phase: athletic abilities have slight differences among roles,
except for WG, the highest one.

• power → Off_phase: also in this case the highest value of the path coefficient is
for the WG model (almost 0.3); others roles have less pronounced heterogene-
ity.

• mentality → Off_phase: this LV seems to be important in the Off_phase for all
roles (all path greater than 0.2) except for WG (less than 0.1), with a peak for
MF and CB (path estimates greater than 0.25).

• skill → Off_phase: contrary to what we would expect, skill (or abilities in the
ball-possession phase) is crucial for the Off_phase of CB, FB and FW (correlation
greater than 0.2). A lower impact for MF, OM and WG.
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(A) Inner model II vs III order constructs

(B) Inner model I vs II order constructs

FIGURE 3.3: Estimated path coefficients by role and 95% BCa -two
tailed- bootstrap CIs (5000 replications)

In conclusion, this analysis marks again the importance of estimating the model
by role: there have emerged more or less pronounced differences between the roles
for both the outer and the inner model.

3.3.4 Players ranking and predictive validity analysis

Tab. 3.6 shows the top 20 players in the Europe ranking (September 2021) consider-
ing our PI overall and observing also their Off and Def phase indicators; in addition,
the benchmark (EA overall) and some proxies are presented (all variables are stan-
dardized). Top players have very high scores in both the offensive and defensive
indicators (there are many central backs and forwards) and the majority of them
play in the English Premier League (9 over 20).



3.3. The application 69

TABLE 3.6: The top players’ ranking based on PI overall

Name League Role Mkt. Value Wage EA overall Def_Phase Off_Phase PI overall

Sergio Ramos FR CB 24 12 2.18 2.94 3.16 2.97
D. Alaba SP CB 36 20 1.62 2.67 2.95 2.71
V. van Dijk EN CB 86 23 2.32 2.52 2.35 2.50
Cristiano Ronaldo EN FW 45 27 2.60 2.24 2.53 2.47
R. Lewandowski GE FW 120 27 2.74 2.26 2.45 2.41
H. Kane EN FW 130 24 2.46 2.35 2.40 2.40
A. Griezmann SP FW 53 22 1.76 2.42 2.27 2.31
L. Suárez SP FW 45 14 2.18 2.25 2.30 2.29
Marquinhos FR CB 91 14 2.04 2.29 2.22 2.28
H. Son EN FB 104 22 2.32 2.20 2.29 2.25
K. Mbappé FR FW 194 23 2.60 2.12 2.24 2.22
M. Hummels GE CB 44 10 1.90 2.18 2.27 2.20
K. De Bruyne EN MF 126 35 2.60 2.00 2.52 2.20
M. Acuña SP FB 37 5 1.62 2.24 2.09 2.17
Bruno Fernandes EN OM 108 25 2.18 2.19 2.08 2.14
Azpilicueta EN CB 25 13 1.48 2.08 2.13 2.09
L. Messi FR WG 78 32 2.88 1.96 2.28 2.07
Thiago Silva EN CB 10 11 1.76 2.06 2.06 2.07
M. Rashford EN FB 78 15 1.76 2.03 2.06 2.05
L. Bonucci IT CB 18 11 1.76 2.01 2.02 2.01

Legend: English Premier League (EN), French Ligue 1 (FR), German
1. Bundesliga (GE), Italian Serie A (IT), Spanish Primera Division (SP)

In the last part of this results section we focus on the predictive validity of our
new performance indicator, that is the last step of the CCA (Sec. 3.2): correlation
of our new PI overall obtained by PLS-SEM with an existing benchmark (EA over-
all) and some other performance proxies: the players’ market value and the players’
wage in a later point of time; for this purpose, we used data from the sofifa website
for December 2021 (original data refers to September 2021). In Tab. 3.7 there is a
summary of this work, considering both concurrent (i.e. the correlation with data
relying the same time) and predictive validity; the first consideration regards the
comparison (for all the sub-tables) among model by role and the full dataset: in all
the three cases considering the full dataset (i.e. without taking into consideration
heterogeneity by role) leads to a lower correlation for both concurrent and predic-
tive validity than considering separate roles. Again, for all the cases we can see a
very slightly decreasing or equal correlation moving from September 2021 to De-
cember 2021: it means that our framework has also a good predictive validity. The
comparison between our indicator and the benchmark (Tab. 3.7a) reveals very high
correlation terms (near or higher than 0.90, just considering the model by role). Tab.
3.7b and Tab. 3.7c show similar scores, generally slightly higher when we compare
our PI overall with the players’ wage: anyway, for both cases we can see medium and
medium-high correlations, considering model by role (always greater than 0.60).
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TABLE 3.7: The predictive validity: analysis with some proxies

(A) PI overall vs EA overall

Model
by
role

Sept.
2021

Dec.
2021

CB 0.914 0.905
FB 0.910 0.897
MF 0.952 0.943
OM 0.977 0.967
WG 0.977 0.966
FW 0.962 0.953

Full
Data

0.670 0.661

(B) PI overall vs Mkt. value

Model
by
role

Sept.
2021

Dec.
2021

CB 0.615 0.600
FB 0.606 0.606
MF 0.650 0.648
OM 0.679 0.665
WG 0.758 0.753
FW 0.616 0.609

Full
Data

0.512 0.505

(C) PI overall vs Wage

Model
by
role

Sept.
2021

Dec.
2021

CB 0.699 0.690
FB 0.657 0.656
MF 0.674 0.671
OM 0.684 0.672
WG 0.762 0.760
FW 0.701 0.701

Full
Data

0.530 0.526

Legend: central backs (CB), full backs (FB), midfielders (MF), offen-
sive midfielders (OM), wings (WG) and forwards (FW)

Take in mind that final results (i.e. the path diagrams) for each model-role are
shown by Fig. A1-A2-A3 in the Appendix A.

3.3.5 In-depth analysis: the goalkeepers model

Thanks a similar approach used before for movement players, now we focus atten-
tion on a singular role, the goalkeepers. Also in this case it has been applied both the
CTA (for first order constructs) and the CCA analysis. In particular, a second order
PLS-SEM model has been developed, in order to build a refined composite indica-
tor dedicated to goalkeepers and comparing it with the well-known EA overall and
others proxies (i.e. goalkeepers’ market value and wage).

For this application it has been still used data provided from sofifa experts and
available on the Kaggle3 data science platform; in particular, we will focus on all
goalkeepers’ stats from the top 5 European Leagues (e.g., Italian Serie A, German
Bundesliga, English Premier League, Spanish LaLiga and French Ligue1). Despite
movement players, this dataset contains 31 variables, with abilities, classified by
sofifa experts into 6 latent traits: attacking, skill, movement, power, mentality and goal-
keeper features; note that, after a preliminary check, we did not take into account
the defending block for this model, since its skills are strictly related with movement
players. Note that the classification provided by sofifa experts is available online4.
We took into account data relying the beginning of the season 2021/2022, so the
dataset was composed by stats about 331 goalkeepers.

Relying the model, it has been assumed the goalkeepers’ macro-composite per-
formance as extra-latent construct of second order, influenced directly from the oth-
ers 6 lower order constructs (LOCs). Since the HOC is without any apparent MVs,
we adopted a mixed two-step approach [39, 49] for modelling this framework, using
a bootstrap validation (i.e. 5000 resampling) for the model in order to assess the path
significance.

3www.kaggle.com/stefanoleone992/fifa-20-complete-player-dataset
4https://sofifa.com/player/192985/kevin-de-bruyne/220030/

www.kaggle.com/stefanoleone992/fifa-20-complete-player-dataset
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Preliminary CTA-PLS output suggested us the following classification for the
LOCs:

• Reflective constructs (i.e. all vanishing tetrads in each block): attacking, mental-
ity and power.

• Formative constructs (i.e. at least one tetrad does not vanish in each block):
gk_features, movement and skill.

At this point we run the model following the CTA-PLS advice and then we assessed
each LV removing problematic MVs as the CCA analysis [126]:

• Reflective constructs: we removed some MVs with reliability problems (i.e.
loadings < 0.7), in particular crossing, heading accuracy and short passing
that refers to the attacking LV, aggression, vision and penalties relying mentality,
and jumping, strength and long shot for power.

• Formative constructs: here we removed MVs with collinearity problems (i.e.
VIF> 5) or outer weights non-significant; agility relying the movement con-
struct, whereas diving, positioning and speed for the gk_features block.

The final model is showed in Fig. 3.4: in the light blue circle there are formative
constructs, whereas in the light blue rectangles there are reflective constructs; finally,
in the white circle there is the HOC. We can see how GK_Features (as we expected)
have the strongest impact on the macro-composite indicator (i.e. beta coefficient
significant and equal to 0.28 for the inner model). It’s interesting to note how for
each LV the strongest MV (i.e. with highest weight or loading) is a typical variable
strictly related with the goalkeepers ability [82], for example: long passing for skill,
reaction for movement, shot power for power, positioning for mentality, short passing
for attacking. Other comforting results derived from the GoF index, that is 0.792
(i.e. the geometric mean between the inner and the outer model performances) and
from the SRMR (standardized root mean square residual, the difference between the
observed correlations and the model-implied correlation matrix), equals to 0.096 (i.e.
under the threshold of 0.10) [126].

FIGURE 3.4: Goalkeepers’ path diagram and estimates significant
(95% BCa -two tailed- bootstrap CIs with 5000 replications)
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TABLE 3.8: The goalkeeper predictive validity: correlation GK per-
formance indicator vs some proxies

Proxies Sept. 2021 Dec. 2021

EA overall 0.858 0.851
Wage 0.605 0.600
Market Value 0.585 0.571

In order to check the concurrent validity, we compared our scores with some
criteria measures (Tab. 3.8), such as the EA overall, wage and players’ market value,
with interesting results: all medium-high correlations and significant, the highest
between our indicator and the EA overall.

3.4 Chapter conclusion

Summarising, in the first part of the chapter we described two important techniques:
the Confirmatory Tetrad Analysis, for evaluating the nature of each first order la-
tent variable and the Confirmatory Composite Analysis, for confirming and refin-
ing each construct. Starting from that preface, we developed in the second part of
the chapter an exploratory application, that is the natural continuation of the early
framework developed in the previous chapter. With the goal to create some robust
composite indicators for measuring the football player’s performance quality, the
computational approach by a Partial Least-Squares Structural Equation Modeling
(PLS-SEM) by a hierarchical approach was adopted, creating an original application
in the sport field. Following experts classification, there were developed 6 differ-
ent models corresponding to the 6 roles, applying the CTA and the CCA. The CTA
framework aimed to confirm by a statistical approach the nature of each first order
construct: for all constructs (first order) of each role CTA defined a formative ap-
proach, whereas we assumed a formative structure for higher order ones; then, in
order to refine each model by role, a CCA was followed: some problematic manifest
variables (MVs) were removed (with non-significant outer weights or loadings, or
due to multicollinearity problems), the highest number for the wing (WG) model
(14), the lowest for the central back (CB), just 4. Considering the outer weights by
role there are significant differences, and we also showed agreement with football
experts’ opinions. A final comparison among each model by role and the full model
was provided by several assessment stats: all the indices agreed with the right choice
to split players by role. In order to further validate our final composite indicator, we
also assessed it for predictive validity, computing correlations of our Player Indi-
cator (PI) overall with the benchmark index EA overall, players’ market values and
wages. Results are good, with higher correlations for the EA overall (greater than
0.90 for all the models by role) and medium-high correlation for the other two prox-
ies (more than 0.60). Overall, recalling that the objective of this research was to create
a player performance measurement model, the presented research tried to replicate
an innovative model for players’ performance quality and at the same time build
two other interesting indicators, Off_phase and Def_phase employing a Third-Order
PLS-SEM approach and validate them by a CTA and a CCA; the objective was to
help football team management (coach, technical staff and scouting), in an impar-
tial evaluation of their players, specific for each role. Another advantage derived
from this new approach is the possibility to split performance into its sub-areas, in
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order to study in-depth the player’s abilities. From a methodological point of view,
for next works it could be interesting to in-depth both the CTA for higher order
constructs and to compare others HOCs estimation approaches [40]. In a similar
way, as in-depth analysis, we developed a PLS-SEM second order model specific for
goalkeepers, showing interesting results. Other interesting paths for future research
could be, as pointed by experts [82], taking into consideration others heterogene-
ity observed factors (for example different seasons), using the Measurement Invari-
ance of the COmposite Models (MICOM) procedure [75], or focused on unobserved
heterogeneity among players, using the Prediction-Oriented Segmentation in PLS
(PLS-POS) method [75]. In addition, it will be interesting also considering a differ-
ent weights scheme based on the role of the players [37]. In particular, in the next
chapter these indicators will be used for improving other existing models of football
(e.g. the expected goal model [63]).
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Chapter 4

An original application: the
Expected Goal Model

In this chapter we will integrate as regressors the composite indicators created in
the previous chapters in a well-known model: the expected goal (xG) model. The xG
model is more and more used in the football world for evaluating each shot accuracy
and measuring the offensive production of a team during a match. As innovation, by
this chapter we want to introduce some original variables (the composite indicators)
for improving and customizing the xG model. The chapter is organised as follow:
in Sec. 4.1 an introduction related the expected goal world is provided, then in Sec.
4.2 the data preparation phase is explained, whereas Sec. 4.3 is devoted to illustrate
the methods; practical application with results and the chapter conclusion are given
respectively in Sec. 4.4 and Sec. 4.5.

4.1 Expected goal review

In this chapter we want to refine and improve, in terms of prediction accuracy, the
well-known expected goal (xG) model, that overpass the most basic and frequently
used metric in football to summarize the team performance: the shot, that can be a
misleading metric, since it does not consider the quality of the goal-scoring oppor-
tunity from which it arises [63, 59, 1]. The main idea of the xG model is to assign
a quality metric on each shot: to do so, it assigns a value between zero and one to
each shot which represents the probability for a shot resulting in a goal, using a ma-
chine learning probabilistic classifier [109]. During the last years, the xG model is
becoming increasingly popular and it is more and more used in the football world
as proxy for measuring players’ finalization performance and teams’ offensive pro-
duction during a match [59]. For this reason, some studies and websites have treated
this topic: for example Rathke [103] and Umami et al. [128] examined shots taking
in consideration only distance and angle to goal, whereas Fairchild et al. [59] made
a spatial analysis of shots of the Mayor League Soccer, by a logistic regression. An-
other recent work [112] tried to quantify the effectiveness of defensive playing styles
in the Chinese Football Super League by using xG.

The main lack is that currently xG models are based just on event data and do
not take in consideration players’ features. Here we want to present an original xG
model by adding some composite indicators relying the players’ performance and
obtained by a Partial Least Squares Structural Equation Modeling (PLS-SEM, [34]),
in order to take in consideration shooters and goalkeepers features. In addition, a
little step forward has been done in a more recent study by Anzer and Bauer, those
refined the existing xG model by adding at the classical event data some synchro-
nized positional data, by using an extreme gradient boosting algorithm [1].
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In summary, the objective is to merge and synchronize data from different sources
(e.g. Understat1 for event data, Math&Sport for tracking data and Sofifa2 for the
players’ performance indicators) for refining and improving the xG in terms of model
sensitivity and performance [109]. From the methodological point of view, a logistic
regression (LR) model will be applied on different samples scenarios, using some
machine learning sample-balanced techniques (SBT, [100, 35], since the target -the
GOAL- is a rare event [103]): Synthetic Minority Over-sampling Technique (SMOTE)
and Random Over-Sampling Examples (ROSE). The benchmark to compare results
will be the xG model provided by Understat (they trained neural network predic-
tion algorithms with a large dataset -more than 100000 shots- over 10 parameters for
each one) and the software for the analysis will be R (version 4.1.3, r-project.org).

4.2 Data description and preparation

Our tracking data provider, due some policy rules, gave us data relying a random
sample of 53 official matches (i.e. drawing along all the season) of the Italian Serie
A 2019/2020. Based on these matches, a merge among data coming from different
sources was done, in particular:

• Event data: the source of these data was the well known free website Under-
stat, that provides event data for the top five European leagues. This kind of
data let us to have and compute, for example, information about the angle of
each shot, if it is an head shot or not and about the shooter; additionally, the
time (first or second half, seconds) of the shot and its location on the pitch (by
x and y coordinates) are provided. In order to scrape these data it has been
used the R package worldfootballR.

• Tracking data: for what concern these players’ positional data, Math&Sport
provided us the data; they are collected with a semi-automatic procedure, that
captures the location of every player on the pitch (by x and y coordinates) with
a temporal frequency of 16 Hz and the corresponding match time for each
tracking frame is specified; in addition, for each frame the player with ball
possession is tagged by a code. By these data we could know the shooter, the
goalkeeper position and how many players disturb the shooter at the moment
of the shot (i.e. the number of opponents between the shooter and the goal,
except the goalkeeper).

• Sofifa data: these data, as recall, are provided by Electronic Arts (EA, eas-
ports.com) experts and they combine the subjective evaluations of over 9000
scouts, coaches and season-ticket holders into ratings for over 18000 play-
ers; they are free available on the Kaggle data science platform (kaggle.com)
and they have been used to create some composite indicators to sum up and
measure players’ performance starting from the 29 Key Performance Indices
(KPIs) for movement players and 31 KPIs for goalkeepers (Fig. 4.1), by using
a PLS-SEM [76, 27] approach: in addition, these models have been validated
by Confirmatory Tetrad Analysis and Confirmatory Composite Analysis [34]
(see Chapter 3). Since these performance data are continuously update (i.e. ev-
ery month, [7]), we computed and saved for our xG model the last composite
indicator available before the date of the match for each player.

1www.understat.com
2www.sofifa.com

www.understat.com
www.sofifa.com
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FIGURE 4.1: Movement players [34] and Goalkeepers [28] inner mod-
els used to construct the composite indicators with the PLS-SEM ap-

proach

4.2.1 The tracking features

For what concern the coordinates on the pitch, we modified them in order to have a
standardized measure, representing respectively the percentage of length and width
of the pitch (Fig. 4.2).

FIGURE 4.2: Standardized x and y coordinates on the pitch

Then, in order to compute the number of players around the shooter, we pro-
ceeded in this way: we counted how many players (excluding goalkeeper) are in
front of the shooter (x coordinate greater than the x of the shooter) and around him
(i.e. y coordinate around the 10% respect the y of the shooter). In Fig. 4.3 we can see
an example: in this case the shooter (blue point) has around him two opponents (red
points).
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FIGURE 4.3: Example of one shooter (blue point) with two opponents
players (red points)

4.2.2 Data merging phase

In order to create the final dataset for the xG model, first of all we did some Extrac-
tion Transformation Loading (ETL) steps, merging the three different sources data
by using the R package sqldf :

1. Data cleaning: from the tracking dataset we removed by a filter all the row-
data tagged as stopped game (for example when the ball is out of the pitch or
when a player is injured on the pitch) whereas for the event dataset we kept
just the shot events.

2. Players’ code legend table: a support table with respectively players’ names
and IDs was created, in order to simplify the successful join among the three
sources data.

3. "Adjusted" Left Join event vs tracking: a naive procedure for each match was
developed in order to merge tracking and event data; after a preliminary check,
we noted that, because of different sources, the time frame of each actions was
not perfectly the same: so, we decided to use a combined primary key (match
and player code joined together) that matched the nearest time frame among
the two sources. In the other words, by this procedure, we performed an "ad-
justed" left join between event and tracking data for each football game: it is
called "adjusted" because we downloaded from the tracking dataset the time
frame closest that matched with our combined primary key.

4. Sofifa merging: the last ETL phase consisted of joined to the shot dataset the
players’ composite indicators created by the PLS-SEM, by using the players’
code; in particular, for each shot we added the indicators relying the shooter
and the opponent goalkeeper.

Due to their limited number, we excluded 9 free kicks, 2 penalties, the variable
"headed" (just 13 headed shots) and 3 outliers (Fig. 4.4) from the final dataset; so,
at the end of the ETL procedure, the dataset was composed by a sample of 660 shots
and 23 features for each-one, relying 53 matches of the season 2019/2020 (Italian
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Serie A): in Tab. 4.1 are described the features used and their sources. Take in con-
sideration that there are 3 binary features: GOAL (i.e. the outcome, 1=goal and 0=no
goal), previous dribbling before the shot (1=yes, 0=no) and favourite foot, i.e. if the
player shots on goal with his favourite foot or not: 1=yes, 0=no; in addition, we con-
verted the variable that counts the number of opponents player around the shooter
into two dummies: the first one (i.e. D1.OpponentsPlayer) is equal to 1 when the
opponents number is greater than 0, whereas the second one (D2.OpponentsPlayer)
is active when that number is greater than 1; the others 18 features are continuous.
In addition, the shots distribution concerning our final dataset is showed in Fig. 4.4.

FIGURE 4.4: Distribution on the pitch of the 660 shots for the 53
matches of the Italian Serie A (Season 2019/2020)
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TABLE 4.1: Statistics of the variables for the sample of 660 shots of 53
matches of the Italian Serie A (Season 2019/2020)

Variable description Source Dataset Mean Std. Q1 Q2 Q3

GOAL (Yes/No) Understat 0.10 0.30 - - -
x (shooter coordinate, %) Understat 83.22 7.64 77.00 83.00 89.00
y (shooter coordinate, %) Understat 49.98 15.06 37.00 50.00 63.00
Favourite foot (Yes/No) Understat 0.77 0.42 - - -
Previous dribbling (Yes/No) Understat 0.32 0.47 - - -
Angle of shot (degree) Understat 37.39 20.81 20.22 39.42 52.80
Previous ball distance (%) Tracking 14.43 8.41 8.60 14.33 17.09
Possession duration (sec.) Tracking 6.49 4.81 5.68 6.49 6.49
D1.OpponentsPlayer Tracking 0.13 0.33 - - -
D2.OpponentsPlayer Tracking 0.05 0.21 - - -
GK x coordinate (%) Tracking 96.74 5.25 96.55 97.67 98.41
GK y coordinate (%) Tracking 50.08 5.06 47.37 50.04 53.07
Defending Sofifa (PLS-SEM) 0.06 0.99 -0.62 0.14 0.61
Mentality Sofifa (PLS-SEM) 0.38 1.00 -0.28 0.41 1.17
Movement Sofifa (PLS-SEM) 0.41 1.03 -0.27 0.32 1.00
Power Sofifa (PLS-SEM) 0.49 1.06 -0.16 0.53 1.10
Skill Sofifa (PLS-SEM) 0.47 0.91 -0.15 0.49 1.12
GK Attacking Sofifa (PLS-SEM) -0.03 1.01 -0.78 0.2 0.77
GK Features Sofifa (PLS-SEM) 0.68 0.78 0.32 0.82 1.12
GK Mentality Sofifa (PLS-SEM) 0.26 0.98 0.08 0.43 0.82
GK Movement Sofifa (PLS-SEM) 0.55 0.73 0.12 0.53 1.02
GK Power Sofifa (PLS-SEM) 0.45 0.92 0.10 0.45 1.19
GK Skill Sofifa (PLS-SEM) 0.06 0.79 -0.51 -0.19 0.52

4.3 Logistic regression and sample balanced techniques

In this section we will discuss about the methodological framework used for the
analysis: since we deal with a classification problem i.e. the Goal (Y = 1) or NoGoal
(Y = 0) based on a set of regressors (18 continuous and 4 binaries), we applied a lo-
gistic model with parameters estimated by maximum likelihood [85]. We preferred
this statistical model than others because of its easy implementation/interpretation
concerning the regressors effects and because the real focus of this study is to in-
troduce new predictors in the expected goal (xG) model, in order to improve the
goal probability estimation. In the context of the xG, this model lets to estimate the
conditional probability of goal for a given shot i by its set of features values x, as
row vector, and estimate parameters β̂ in (4.1). Note that the regression coefficients
are estimated by maximum likelihood [85], with the corresponding maximum of the
log-likelihood in (4.2).

xG = P(Goal|X) = eXβ̂

1 + eXβ̂
(4.1)

logL(β̂) =
n

∑
i=1

yilog(xGi) +
n

∑
i=1

(1 − yi)log(1 − xGi) (4.2)
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Then, the typical good of fit index used in logistic regression is the McFadden Pseudo-
R2 [97], that ranges between 0 and 1:

Pseudo − R2 = 1 − logL(β̂)

logL(β0̂)
(4.3)

Where logL(β̂) is the max log likelihood value for the fitted model (including all the
predictors) and logL(β0̂) is the max log likelihood value for the null model which
includes only the intercept as predictor; regards its interpretation, already from a
range between [0.20 − 0.40] it represents excellent fit, considering that (2 · Pseudo −
R2) has roughly the same interpretation of the standard R2 for linear regression [97].

OR =
xG

1 − xG
=

P(Goal|X)
P(NoGoal|X) (4.4)

Finally, in the logistic regression framework, the odds ratio estimate (OR), in order
to establish if one regressor can be considered as risk (OR > 1), neutral (OR = 1) or
protective (OR < 1) factor for the event, is the suitable metric (4.4).

4.3.1 The metrics used to evaluate the model

In the field of classification problems, the more appropriate performance measures
may be derived from the confusion matrix (Tab. 4.2), which compares the predicted
labels to the actual ones.

TABLE 4.2: The Confusion Matrix

Predicted

0 1

Actual 0 TN FP
1 FN TP

In order to provide comprehensive assessments of imbalanced learning prob-
lems, the most frequently adopted performance measures are based on different
propensity towards false negatives (FN) and false positives (FP) [81]:

• Accuracy: it is the ratio of correct predictions over the total number of in-
stances evaluated, as (TP + TN)/(TP + TN + FP + FN).

• Sensitivity (Recall): it measures the proportion of true positive (TP) that are
correctly classified TP/(TP + FN).

• Specificity: it measures the proportion of true negative (TN) that are correctly
classified TN/(TN + FP).

• Precision: it computes the fraction of examples classified as positive that are
truly positive TP/(TP + FP).

• F1: it represents the harmonic mean between precision and recall, as (2 · Precision ·
Recall)/(Precision + Recall).

One of the most frequently used tools for evaluating the accuracy of a classifier is
the Receiver Operating Characteristics (ROC) curve. As the classification threshold
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varies, the predicted label is assigned to the examples and the confusion matrix rep-
resented. The true positive rate (sensitivity of the classifier) is then plotted versus
the false positive rate (1-specificity of the classifier) for each considered value of the
classification threshold. The classifier performs as better the steeper the ROC curve
becomes, that is, the larger the area underlying the curve (AUC) is (1 as maximum
possible value).

4.3.2 The Imbalanced Training Sample Problem

By observing Tab. 4.1 stats, it’s clear how our target feature is an imbalanced vari-
able, as the proportion of goal is "only" the 10% considering all the shots in our
dataset (i.e. the goal is a rare event). In these circumstances is sometimes recom-
mended the use of models like the Gompit (complementary log-log) [18], but in
this case the main goal is to improve the goal detection capability of the xG model;
supporting the last sentence, it has been largely reported that this class imbalance
heavily compromises the training process, because the model tends to focus on the
prevalent class and to ignore the rare event (the scarcity of data leads to poor model’s
accuracy and the model struggles to correct classify the rare event) [100, 54].

In order to overcome this problem, the issue of class imbalance can be addressed
in two ways: one is to assign distinct costs to training examples and the other is
to balance by some resampling techniques the original dataset [35]; in particular, we
will treat with the second group of techniques. Remedies following the "resampling"
approach include various approaches: the most common are random oversampling
with replacement the rare class and random undersampling (without replacement)
the prevalent class. Oversampling, in its simplest form, duplicates examples of the
minority class, while undersampling removes some data from the most frequent
class [100]. Generally, before applying these approaches the dataset is used ran-
domly split in two parts: 2/3 of the data are used as training set and the remaining
1/3 as test set; oversampling and/or undersampling work directly on the training
set, then the classification model that coming in output is performed in the test set.
Both undersampling and oversampling have some weak points [96]: the first one
may discard potentially useful data, thus reducing the sample size, while the sec-
ond may increase the likelihood of overfitting, since it is bound to produce ties in
the sample, especially as the sampling rate increases. In addition, the augmented
sample increases the computational effort of the learning process.

In order to overcome the limitations of classic under and oversampling tech-
niques, some other approaches have been developed: in particular, increasing at-
tention has been recently paid to the novel strategy of generating new artificial ex-
amples that are "similar" to the observations belonging to the minority class. In the
next sections, we will discuss about two of these approaches: the Synthetic Minority
Oversampling Technique (SMOTE, [35]) and the Random OverSampling Examples
(ROSE, [100]). From a practical point of view, for both algorithms, the synthetic
training set can be used to estimate the classification model, whereas the original
data remain free of being used as test set (alternatively, cross-validation or smoothed
bootstrap methods, [100]). In addition, when we balance a dataset thanks some tech-
niques like ROSE or SMOTE, we must compensate for the effects of our modifica-
tions to the training data [8, 52]. For the Bayes’ Theorem, posterior probabilities are
proportional to the prior ones, which can be estimated as the relative frequency in
each category. Therefore, the estimated posterior probabilities (expected goal) ob-
tained using artificially balanced data set can be corrected (calibrated, xG∗) using
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the following formula (4.5):

xG∗ =
0.1
0.5 xG

0.1
0.5 xG + (1−0.1)

(1−0.5) (1 − xG)
(4.5)

as in our case 10% and 50% are the real and artificial (balanced) sample sizes of the
rare class respectively. Additionally, (4.5) will be used for calibrating the test set
probabilities (see better in Sec. 4.4).

4.3.3 SMOTE

This algorithm was proposed by Chawla et al. [35] and it is an approach in which the
minority class is oversampled by creating “synthetic” examples rather than by over-
sampling with replacement. The rare class is oversampled taking in consideration
each rare class sample and introducing synthetic examples along the line segments
joining any or all of the k minority class nearest neighbours. Depending upon the
amount of oversampling required, some neighbours are randomly chosen: for in-
stance, if we set k = 5 nearest neighbours and if the amount of oversampling needed
is 100%, only one neighbor is chosen and one sample is generated in that direction.
In Fig. 4.5 we show how the algorithm works considering as example the statistical
unit ui: it chooses the 5 nearest neighbours and then it randomly selects one of them
(uKnn

ik ); the procedure that creates the artificial unit uSMOTE
j can be summarized by

(4.6).

FIGURE 4.5: Minority observations cloud: example of SMOTE proce-
dure

uSMOTE
j = ui + (uKnn

ik − ui) · δi (4.6)

In order to focus on (4.6), synthetic samples are generated in the following way:

1. Compute the difference between the features vector under consideration and
its nearest neighbour;

2. Multiply the difference of the step 1 by a random number (δ) between 0 and 1;

3. Add the quantity coming out from the step 2 to the features vector under con-
sideration.
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The procedure described causes the selection of a random point along the line seg-
ment (uSMOTE

j ). So, this approach effectively forces the decision region of the minor-
ity class to become more general. In particular, since our dataset contains 4 nominal
covariates (i.e. binary) we will use the SMOTE for Nominal-Continuous (SMOTE-
NC) features [35]: here the continuous variables of the new synthetic minority class
sample are created using the classical SMOTE approach, whereas for the nominal
features are given the values occurring in the majority of the k-nearest neighbours.
The main drawback of SMOTE is that the majority of the new observations will be
located near the most dense zones of the minority class, as consequence there are
just few units near the marginal points.

4.3.4 ROSE

The Random OverSampling Examples (ROSE) algorithm is based on the generation
of new artificial data from classes, according to a smoothed bootstrap approach,
proposed by Menardi and Torelli [100]. Considering the initial training sample with
sample size n, the ROSE procedure for generating one artificial example follows
these steps:

• Select randomly one of the two classes assuming equiprobability;

• Called nj < n the sample size of the class j selected randomly select a statistical
unit i with its features vector xi with probability pi =

1
nj

;

• Sample x from KHj(·, xj), with KHj a probability distribution centred at xi and
Hj a matrix of scale parameters.

In practise, the algorithm draws from the training set an observation belonging to
one of the two classes and generate a new example in its neighbourhood (the width
of the neighbourhood is determined by Hj). Note that KHj is usually chosen in the
set of unimodal and symmetric distributions. In particular, once a label class yj
has been selected, this technique generates new examples starting from that one by
generating data from the kernel density estimate of f (x|yj) (4.7).

f̂ (x|yj) =
nj

∑
i=1

pi · Pr(x|xi) =
nj

∑
i=1

1
nj

· KHj(x − xi) (4.7)

The repeated implementation of the three steps explained above let to create a new
artificial training set (let’s call T∗

s ) with size s where approximately the same number
of examples belong to the two classes. Note that the size s can be set to the orig-
inal training set size n or chosen in any other way. ROSE combines techniques of
oversampling and undersampling by generating an augmented sample of data thus
helping the classifier in estimating a more accurate classification rule, because the
same attention will be addressed to both the classes (e.g. strengthening the process
of learning as well as estimating the distribution of the chosen measure of the model
accuracy).

ROSE allows to overcome the limits of both apparent error (i.e. overfitting prob-
lems, a too high accuracy in the classifier’s performance) and holdout method (i.e.
non-advisable in unbalanced learning because the scarcity of rare class prevents their
use in both training and test set). It was proofed that, by generating ROSE examples,
the logit model shows better performances (in terms of classification accuracy and
precision) than the classical decision trees [100].
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4.4 Results and discussion

From a practical point of view, we developed a routine in R by using a stratified
3-Fold cross validation for evaluating the model fit and computing the performance
measures, with 5000 replications (Fig. 4.6); it was performed for each framework
(ROSE, with R package ROSE and SMOTE, with R package RSBID) and it works
for each one of the 5000 replication in this way:

1. A stratified (i.e. keeping constant as in the original dataset the proportion of
Goal and NoGoal in both the training and the test set) 3-fold cross validation
has been performed, balancing each time the training set before applying the
logistic regression, using all the regressors introduced in Tab. 4.1 (quantitative
regressors have been standardized): at this point, for each fold the model fit
was measured by computing the Pseudo − R2; then, the corresponding quan-
titative regressors on the test set were standardized too, before computing
xG(4.1) and the correction xG∗(4.5). As a conclusion of this step, the out-of-
sample performance metrics (Sec. 4.3.1) have been computed, using the xG∗

probabilities in (4.5).

2. For each 3-fold cross validation procedure, the average for each performance
metric and for the Pseudo − R2 have been computed;

3. Repeat the steps 1 and 2 for 5000 times, each time with different (random) split
of the dataset for what concern the stratified 3 fold cross validation.

In addition, a similar routine (without balancing the training set) has been per-
formed for the imbalanced dataset, whereas for the benchmark (i.e. Understat) we
directly had the xG probability. Note that xG(4.1) has been used for the Imbalance
out-of-sample estimates.

FIGURE 4.6: The estimation process
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4.4.1 The logistic regression model output

Here we show preliminary results concerning the logistic regression model: first of
all, none regressor showed collinearity problems (i.e. all Variance Inflation Factors
-VIFs- lower than 5, [107]); additionally, for evaluating the model fitting on each
training set, the distribution of the Pseudo-R2 obtained with 5000 replications of
the stratified 3-fold CV has been computed and showed by a boxplot (Fig. 4.7a):
the SMOTE approach shows better performance (McFadden between 0.32 and 0.50),
whereas for ROSE and imbalance the Pseudo-R2 has respectively a range between
0.15 and 0.29 and 0.25 and 0.30. In addition, the difference between the Pseudo-R2

distribution of our model and a nested model with just 3 regressors, as x, y and
angle of shot [103, 128] for each framework is showed in Fig. 4.7b: in all the cases
our complete model shows better performance in terms of model fitting (the boxplot
difference distributions do not contain zero).

(A) The boxplot of the Pseudo-R2 obtained with 5000 replications among frameworks relying the
complete model

(B) The boxplot of the difference between the Pseudo-R2 (complete vs nested) among frameworks
(5000 replications)

FIGURE 4.7: The Pseudo-R2 McFadden distributions

Now, focusing on regressor estimates and their odds ratios, we show in Tab. 4.3 a
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summary after 5000 iterations. To assess the statistical significance of the regressors
the following notation is used [51]:

• *: if, for the i − th regressor, the interval βiˆ ± 1 ∗ Stdβiˆ
does not contain 0.

• **: if, for the i − th regressor, the interval βiˆ ± 2 ∗ Stdβiˆ
does not contain 0.

• ***: if, for the i − th regressor, the interval βiˆ ± 3 ∗ Stdβiˆ
does not contain 0.

We can see how not all the regressors in the model have significant estimated coef-
ficients: for all frameworks are significant (at least with one *) the estimate of the
coefficients of x, angle of shot, previous ball distance for what concern the Understat
features block, whereas we find D2.OpponentsPlayer and the goalkeeper position (at
least two **) for the tracking block. Then, also some performance features like move-
ment, GK Mentality and GK Skill are relevant for both frameworks. The approach
with the highest number of significant features is the imbalance (17 with three as-
terisks). Again, it’s interesting to in depth this analysis by observing the odds ratios
related with the relevant regressors: as recall, an OR greater (lower) than 1 means
that feature is preparatory (protective) for the goal. For instance, the x regressor has
an OR > 1 for each framework, it means that the position to shot is preparatory to
goal (i.e. high x position -near the box- means high probability to score a goal); simi-
lar situation (OR > 1) for GK y coordindate and Movement, two original composite
performance indicators. An example concerning the opposite situation is the angle
of shot (OR < 1), it means that is protective to goal (i.e. high angle of shot means
low probability to score a goal); comparable circumstance for our original regressors
D2.OpponentsPlayer, GK y coordinate and GK mentality.

TABLE 4.3: The Logistic Regression coefficients and odds ratios es-
timates after 5000 iterations for the 53 matches of the Italian Serie A

(Season 2019/2020)

Regressor Coeff. ROSE Coeff. SMOTE Coeff. Imbl. Odds ROSE Odds SMOTE Odds Imbl.

x 0.94*** 2.09*** 1.74*** 2.57 8.10 5.70
y 0.02 -0.05 -0.09*** 1.02 0.95 0.91
Favourite foot -0.16 0.10 0.17*** 0.85 1.10 1.19
Previous dribbling 0.21* 0.33* 0.46*** 1.23 1.39 1.59
Angle of shot -0.53*** -1.40*** -1.09*** 0.59 0.25 0.34
Previous ball distance -0.09* -0.22* -0.06** 0.92 0.80 0.94
Possession duration -0.18 -0.25* -0.22*** 0.84 0.78 0.80
D1.OpponentsPlayer -0.74 -1.02* -0.71 0.48 0.36 0.49
D2. OpponentsPlayer -5.69*** -6.13*** -5.68*** 0.00 0.00 0.00
GK x coordinate -0.33*** -0.59** -0.33*** 0.72 0.56 0.72
GK y coordinate 0.27*** 0.48*** 0.46*** 1.32 1.62 1.59
Defending 0.14* 0.13 0.16*** 1.15 1.14 1.17
Mentality 0.03 -0.23 -0.40*** 1.03 0.79 0.67
Movement 0.12* 0.40* 0.27*** 1.13 1.49 1.31
Power -0.01 -0.07 0.14*** 0.99 0.93 1.16
Skill 0.08 0.23* 0.21*** 1.09 1.26 1.23
GK_Attacking 0.02 0.05 0.03* 1.02 1.05 1.03
GK_features 0.03 0.32* 0.22*** 1.03 1.38 1.24
GK_Mentality -0.15* -0.44** -0.33*** 0.86 0.64 0.72
GK_Movement 0.10* 0.15 0.07** 1.10 1.17 1.08
GK_Power -0.17* -0.20 -0.17** 0.84 0.82 0.84
GK_Skill 0.10* 0.27** 0.20*** 1.11 1.31 1.22

Finally, in order to illustrate the expected goal probability directly on the pitch,
an heatmap (using the coefficients of Tab. 4.3 related the imbalance framework) is
provided in Fig. 4.8: the field zones have been divided in deciles and the colour
shade is proportional to the estimated probability to score a goal (xG).
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FIGURE 4.8: The xG heatmap for the 53 matches of the Italian Serie A
- Season 2019/2020

4.4.2 Classification performance of the Logit Model

As explained in Sec. 4.3.1, for binary classification problems usually the probabilistic
classifier (xG) is transformed in the categorical one (Goal, NoGoal) using the thresh-
old 0.5. For instance, in our situation, an expected goal (shot quality) greater than
this threshold will be classified as a goal. In Tab. 4.4 are proposed all the classifi-
cation performance metrics (Sec. 4.3.1) and their average scores (5000 replications),
comparing them with the benchmark (that is a punctual value, directly provided
from Understat). Take in consideration that asterisks in Tab. 4.4 (Tab. 4.5) must
be interpreted in a similar way of coefficients and odds ratios related the previous
paragraph (Sec. 4.4.1), but in this case the confidence interval must not be include
the corresponding benchmark (Understat) metric to be significant.

TABLE 4.4: The performance classification metrics averaged after
5000 replications for the sample of 660 shots of 53 matches of the Ital-
ian Serie A -Season 2019/2020- compared with the benchmark (clas-

sification threshold=0.5)

Metric ROSE SMOTE Imbl. Understat

Accuracy 0.89* 0.86*** 0.90 0.91
Sensitivity 0.14* 0.36*** 0.15 0.16
Specificity 0.98* 0.91*** 0.98* 0.96
Precision 0.35* 0.32** 0.51*** 0.22
F1 0.16 0.33*** 0.23 0.19
AUC 0.72 0.73 0.74* 0.72

In Tab. 4.4 the metrics those outperform the benchmark are emphasized in bold.
Using the classical classification threshold (0.5), both ROSE and Imbalance signifi-
cantly outperform in terms of specificity and precision the benchmark (Understat)
whereas SMOTE seems able to detect better the goals (sensitivity equals to 0.36 vs
0.16 of the benchmark) and to improve Understat in terms of F1 and precision. The
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AUC metric is similar for all the frameworks, except for the Imbalance, that signifi-
cantly outperforms Understat (0.74 vs 0.72).

Despite 0.5 is the classical classification threshold used for the categorical clas-
sifier,we noted that the Goal event is a rare event (Tab. 4.1, 10% of Goal): for this
reason, we decided to simulate some scenarios with different classification thresh-
olds (from 0 to 0.5, using a pace of 0.001), for each framework. For each simulation
have been saved the average sensitivity and specificity rate after 5000 replications,
except for Understat, for which we directly had the xG probability and so the related
probabilistic classifier value: we can see by Fig. 4.9 that the two balanced approaches
have a similar equilibrium threshold point (0.135 for ROSE and 0.155 for SMOTE),
whereas it is at about the half for the two imbalanced frameworks (0.075 for im-
balance and 0.065 for the benchmark); then, in correspondence of each equilibrium
threshold, all the 4 frameworks have a similar rate (around 0.65 for both specificity
and sensitivity). In addition, the frameworks curves seem to have a similar slope,
except for SMOTE, that is a little less pronounced: when threshold is 0.5, it has a
higher sensitivity rate than the other approaches.

FIGURE 4.9: The classification thresholds performance scenarios for
each framework

At this point, we still performed the 5000 replications using for each framework
the corresponding equilibrium point as threshold: we chose this point since it is the
only one in which the proportion of real Goal predicted (sensitivity) and real NoGoal
predicted (specificity) are the same, minimizing both the errors, as trade-off point.
Results are showed in Tab. 4.5: for the AUC metric we have the same situation
of Tab. 4.4; in particular, since we chose an equilibrium point, we have lost some
percentage of accuracy and specificity than before, but the benchmark (Understat)
has been outperformed for what concern the percentage of goal correctly predicted
(precision) and for the F1 metric.



90 Chapter 4. An original application: the Expected Goal Model

TABLE 4.5: The performance classification metrics averaged after
5000 replications for the sample of 660 shots of 53 matches of the Ital-
ian Serie A -Season 2019/2020- compared with the benchmark (clas-

sification threshold=equilibrium point of each framework)

Metric ROSE SMOTE Imbl. Understat

Accuracy 0.66 0.66 0.67 0.66
Sensitivity 0.66 0.66 0.66 0.65
Specificity 0.66 0.66 0.66 0.65
Precision 0.17*** 0.17*** 0.18*** 0.11
F1 0.28*** 0.28*** 0.28*** 0.19
AUC 0.72 0.73 0.74* 0.72

4.4.3 In depth-analysis: some real cases

Now, in order to emphasize the importance of the new regressors (players’composite
indicators and their positions on the pitch) introduced in the model, we propose
some real goal, comparing their expected goal for each framework and introducing
some variation, in order to better understand how the xG changes.

In the first real case (Fig. 4.10) we propose a goal scored from a high distance
during the match Bologna vs Inter (November 2019), in a situation with a high num-
ber of opponents in front of the shooter: in particular, here we have a good player
as shooter (Soriano, Bologna) and a top player as goalkeeper (Handanovic, Inter).
Then we propose the expected goal for each framework (xG∗ for ROSE and SMOTE)
and others two scenarios (Tab. 4.7): the first one putting a top player as shooter
(Ronaldo), whereas the second one leaving the same top player as shooter (Ronaldo,
Juventus) and moving a normal goalkeeper (Skorupski, Bologna). We can see how
in the real scenario our balanced frameworks increase the goal prediction accuracy
(higher xG than the benchmark); the xG for the imbalance approach is very similar
(2.0% vs 2.1%). It’s interesting to note how introducing firstly a top player as shooter
(Scenario 1), then a normal goalkeeper (Scenario 2) the expected goal increase in both
three frameworks, emphasizing the importance of introducing players’ performance
indices in the model, as innovation of this work.

FIGURE 4.10: Real case 1: goal from the distance
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TABLE 4.6: The real case 1: expected goal for each framework and
different scenarios

Situation Shooter GK xG∗ ROSE xG∗ SMOTE xG Imbl. xG Understat

Real case 1 Soriano (Bol) Handanovic (Int) 4.1% 2.3% 2.0% 2.1%
Scenario 1 Ronaldo (Juv) Handanovic (Int) 5.4% 3.3% 3.1% 2.1%
Scenario 2 Ronaldo (Juv) Skorupski (Bol) 7.1% 4.4% 4.5% 2.1%

In the second real case (Fig. 4.11a) we propose a goal scored from a low distance,
in a very favourable situation (Atalanta vs Brescia, July 2020). Here the alternative
scenario considers the goalkeeper position: whereas in the real case he is aligned at
his own goal post, in the alternative scenario he is slightly out of goal (Fig. 4.11b).
We can see also in the real scenario 2 that our balanced frameworks increase the goal
prediction accuracy (higher xG than the benchmark), with SMOTE and imbalance
those have a similar xG: as expected (more favourable chance), we have in a higher
xG than the real case 1. It’s interesting to underline that moving the goalkeeper
position outside the box (Scenario 1) increase a lot the xG of the shot.

(A) Real case 2: goal near the box (B) Scenario 1: moving the GK position

FIGURE 4.11: The second real case and its alternative scenario on the
pitch

TABLE 4.7: The real case 2: expected goal for each framework and its
alternative scenario

Situation Shooter GK xG∗ ROSE xG∗ SMOTE xG Imbl. xG Understat

Real case 2 Pasalic (Ata) Andrenacci (Bre) 14.6% 22.1% 21.7% 11.0%
Scenario 1 Pasalic (Ata) Andrenacci (Bre) 30.0% 58.5% 52.2% 11.0%

4.5 Chapter conclusion

In this chapter is proposed an improvement of the current expected goal (xG) Model,
one of the emerging tool in the field of football analytics. The main idea under this
model is to assign a quality metric (probability) to goal for each shot. The main idea
under this model is to assign a quality metric (probability) to goal for each shot. The
main lack of the current xG frameworks is that they take in consideration only the
classical event data: in order to overcome this weakness and to customize the model,
we integrated some players performance composite indicators obtained from a PLS-
SEM approach and some tracking data, such as the goalkeepers position and the
number of opponents players. To do this one, we used and merged data relying 53
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matches coming from the Italian Serie A, with a final dataset composed by 660 shots
and 23 features (1 outcome and 22 regressors). In addition, from a methodological
point of view, another important issue that has not taken in consideration until now
is the nature of the goal: it is infact a rare event (i.e. 1 goal over 10 shots), as con-
sequence we have an imbalance sample. It has been largely reported that this class
imbalance heavily compromises the process of learning, because the model tends to
focus on the prevalent class and to ignore the rare event: in order to overcome this
limit, we applied ROSE and SMOTE, two balanced algorithms. As baseline frame-
work we adopted the imbalance approach and as benchmark the Understat xG.

We developed a routine applying 5000 times the 3 Fold Cross-Validation, with
randomly split every time, using a logistic regression model as learning method;
then, we summarized and saved each model performance. As preliminary analysis,
we compared the McFadden Pseudo-R2 of our complete model with a nested one
(i.e. the most used in previous literature), proofing a better fitting: the Pseudo-R2

McFadden difference distribution always showed better performance for the com-
plete model (i.e. it does not contain the zero). The beta coefficients distribution said
us that there are different significant regressors for every framework: in particular,
for all frameworks are significant x, angle of shot, previous ball distance (Understat
features block), whereas we found D2.OpponentsPlayer and the goalkeeper posi-
tion for what concern the tracking block. Then, also some performance features like
movement, GK Mentality and GK Skill are relevant for both frameworks. The ap-
proach with the highest number of significant features is the imbalance. Again, by
observing the odds ratio, we found that the x regressor has an OR > 1 for each
framework, proofing that the position to shot is preparatory to goal (i.e. high x posi-
tion -near the box- means high probability to score a goal); similar situation (OR > 1)
for GK y coordindate and Movement, two original composite performance indica-
tors. Example of regressor with OR < 1 were the angle of shot, emphasizing its
protective role to score a goal; comparable circumstance for our original regressors
D2.OpponentsPlayer, GK y coordinate and GK mentality.

For what concern the model performance metrics, we initially simulated a sce-
nario with different classification thresholds, for each framework, then we in depth
the analysis by using the classical threshold of 0.5 and the equilibrium point for each
one. In the first case both ROSE and Imbalance significantly outperform in terms
of specificity and precision the benchmark whereas SMOTE improves Understat in
terms of sensitivity, F1 and precision. The AUC index is similar for all the frame-
works, except for the Imbalance, that significantly outperforms Understat (0.74 vs
0.72). In the second case our frameworks outperformed the benchmark for what
concern precision and F1 metrics; the imbalance improved the AUC, too. Finally, we
proofed by some real cases that by modifying the players’ performance indices and
positions on the pitch, the xG changes, increasing the goal prediction probability,
that’s an innovation for this model.

As summary, the original approach presented in this chapter seems to suggest
that some performance indicators (developed during this thesis) and the tracking
variables are helpful to detect the goals, improving the benchmark model. As future
works, it should be interesting to in-depth this topic by using more data, relying a
major number of matches, more football seasons and leagues, and maybe comparing
other classification model (for example, Gompit [18]) performances.
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Conclusion

As summary, in the thesis a literature review was proposed in Chapter 1, revealing a
strong growing related the football analytics production over the last decade; then,
in Chapter 2 the focus was pointed versus the creation of some composite perfor-
mance indicators for football players by a Partial Least Squares Structural Equation
Modeling (PLS-SEM) approach: after a preliminary overview of the method in the
first part of the chapter, a preliminary Third-Order model was developed as appli-
cation in the second part. For this purpose, the sofifa data have been used, provided
from EA Sports experts, which are the ultimate authority on soccer performance
measurement, infact they constantly maintain a database of realistic players’ per-
formance attributes resulting from careful and systematic data collection; according
to the experts, performance variables make up several broader, theoretical dimen-
sions. In this phase, the heterogeneity observed among leagues and players’roles
have been evaluated, revealing the second as confounding factor: for this reason
different early models have been developed, one for each role. Then, in Chapter
3 each model-role was refined by applying a Confirmatory Tetrad Analysis (CTA),
for evaluating statistically the nature of each first order latent construct, and a Con-
firmatory Composite Analysis (CCA), for removing problematic manifest variables.
In a similar way, as in-depth analysis, a PLS-SEM second order model specific for
goalkeepers, was developed. A final comparison among each model by role and the
full model was provided by several assessment stats: all the indices agreed with the
right choice to split players by role. In order to further validate our final compos-
ite indicator, the predictive validity was evaluated, computing correlations between
the Player Indicator (PI) overall with a benchmark (EA overall), players’ market val-
ues and wages.

By these chapters the main objective was to create an innovative indicator for
players’ performance customized for each role, able to capture the different latent
traits of the performance; for sure, the first goal was to help football team man-
agement (coach, technical staff and scouting), in an impartial evaluation of play-
ers. Another advantage derived from this new approach is the possibility to split
performance into its sub-areas. Then, the other goal was to integrate those origi-
nal composite indicators with others tracking variable (Math&Sport) and introduce
them as regressors in the expected goal (xG) model (Chapter 4). The classical xG
model, based just on event data was tried to be improved by introducing our orig-
inal variables, applying a logit model with three different frameworks: the imbal-
ance approach and two balanced methods, SMOTE and ROSE. These approaches,
compared with a benchmark (the Understat xG), showed important performance, in
particular the imbalance approach outperformed the benchmark in terms of speci-
ficity, precision and AUC index. In summary, the original approach presented in the
last chapter suggested that some performance indicators (created in the previous
chapters) and the tracking variables are helpful to detect the goals, improving the
benchmark model.

As future steps, for what concern the PLS-SEM approach, it could be interesting
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to in-depth both the CTA for higher order constructs and comparing others estima-
tion approaches [40]. Other interesting paths for future research could be, as pointed
by experts [82], taking into consideration others heterogeneity observed factors (for
example different seasons) maybe using the Measurement Invariance of the COm-
posite Models (MICOM, [75]). Instead, concerning the xG model, first of all it should
be interesting to in-depth this topic by augmenting the shots sample size, in order
to investigate if this approach confirm the preliminary results; in addition, focusing
on specific tactical situations, such as studying the xG in function of the distance be-
tween the goalkeeper and the shooter, or introducing the composite indicators scores
for all the players. By the xG model approach based on composites the aim was to
refine and improve the existing one, in order to help policy makers and stakeholders
for evaluating the teams production during a match, based on the shots quality.
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Appendix A

The PLS-SEM Third-Order by role

(A) The CB path diagram

(B) The FB path diagram

FIGURE A1: Path diagram by defensive roles and estimates signifi-
cant (95% BCa -two tailed- bootstrap CIs with 5000 replications)

Legend: central backs (CB), full backs (FB)
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(A) The MF path diagram

(B) The OM path diagram

FIGURE A2: Path diagram by midfielder roles and estimates signifi-
cant (95% BCa -two tailed- bootstrap CIs with 5000 replications)

Legend: midfielders (MF), offensive midfielders (OM)
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(A) The WG path diagram

(B) The FW path diagram

FIGURE A3: Path diagram by offensive roles and estimates significant
(95% BCa -two tailed- bootstrap CIs with 5000 replications)

Legend: wings (WG), forwards (FW)
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