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Abstract

In the recent years the challenge for new prior specifications and for complex hierar-

chical models became even more relevant in Bayesian inference. The advent of the

Markov Chain Monte Carlo techniques, along with new probabilistic programming

languages and new algorithms, extended the boundaries of the field, both in theoret-

ical and applied directions. In the present thesis, we address theoretical and applied

tasks. In the first part we propose a new class of prior distributions which might

depend on the data and specified as a mixture between a noninformative and an

informative prior. The generic prior belonging to this class provides less information

than an informative prior and is more likely to not dominate the inference when the

data size is small or moderate. Such a distribution is well suited for robustness tasks,

especially in case of informative prior misspecification. Simulation studies within the

conjugate models show that this proposal may be convenient for reducing the mean

squared errors and improving the frequentist coverage. Furthermore, under mild

conditions this class of distributions yields some other nice theoretical properties.

In the second part of the thesis we use hierarchical Bayesian models for predicting

some soccer quantities and we extend the usual match goals’ modeling strategy by

including the bookmakers’ information directly in the model. Posterior predictive

checks on in-sample and out-of sample data show an excellent model fit, a good model

calibration and, ultimately, the possibility for building efficient betting strategies.





Sommario

Negli ultimi anni la sfida per la specificazione di nuove distribuzioni a priori e per

l’uso di complessi modelli gerarchici è diventata ancora più rilevante all’interno del-

l’inferenza Bayesiana. L’avvento delle tecniche Markov Chain Monte Carlo, insieme

a nuovi linguaggi di programmazione probabilistici, ha esteso i confini del campo, sia

in direzione teorica che applicata. Nella presente tesi ci dedichiamo a obiettivi teorici

e applicati. Nella prima parte proponiamo una nuova classe di distribuzioni a priori

che dipendono dai dati e che sono specificate tramite una mistura tra una a priori

non informativa e una a priori informativa. La generica distribuzione appartenente a

questa nuova classe fornisce meno informazione di una priori informativa e si candida

a non dominare le conclusioni inferenziali quando la dimensione campionaria è pic-

cola o moderata. Tale distribuzione è idonea per scopi di robustezza, specialmente in

caso di scorretta specificazione della distribuzione a priori informativa. Alcuni studi

di simulazione all’interno di modelli coniugati mostrano che questa proposta può es-

sere conveniente per ridurre gli errori quadratici medi e per migliorare la copertura

frequentista. Inoltre, sotto condizioni non restrittive, questa classe di distribuzioni

dà luogo ad alcune altre interessanti proprietà teoriche.

Nella seconda parte della tesi usiamo la classe dei modelli gerarchici Bayesiani

per prevedere alcune grandezze relative al gioco del calcio ed estendiamo l’usuale

modellazione per i goal includendo nel modello un’ulteriore informazione proveniente

dalle case di scommesse. Strumenti per sondare a posteriori la bontà di adattamento

del modello ai dati mettono in luce un’ottima aderenza del modello ai dati in possesso,

una buona calibrazione dello stesso e suggeriscono, infine, la costruzione di efficienti

strategie di scommesse per dati futuri.





A chi crede nel progresso, ma non troppo.
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Chapter 1

Introduction

1.1 Overview

The recent success of an algorithmic philosophy within Bayesian inference has had a

lot of practical and theoretical efforts, which turn out to speed up the computational

times, to improve the fit and the prediction power of the models and, in general, to

broaden the set of the underlying assumptions. As the problem complexity grows,

the need of new computational solutions is vital. The development of probabilistic

programming languages as WinBUGS (Spiegelhalter et al., 2003) and Stan (Stan De-

velopment Team, 2016b,a) expanded and automatized some procedures for fitting the

models, giving the possibility of manually setup the priors along with their hyperpa-

rameters and obtaining posterior estimates through automatic MCMC sampling.

The two topics that probably have been more deeply touched by the ‘algorithmic

revolution’ are prior elicitation and hierarchical modeling, which are strongly con-

nected. Eliciting the prior distribution is the milestone of Bayesian inference and

is still one of the most debated tasks. Subjectivist Bayesians interpret the prior as

an expert belief before observing the data (Garthwaite et al., 2005), while objective

Bayesians (Berger et al., 2006) often push towards an automatic elicitation, with-

out requiring external information, regardless of the noninformative nature of the

prior. Furthermore, some authors have recently proposed approaches for eliciting the

prior distribution using the data (Wasserman, 2000), while others tried to formalize

data-dependent priors within Bayesian inference, either in terms of a new paradigm

(Darnieder, 2011) or in terms of an approximation to a Bayesian model (Gelman,

2016a). With the advent of the MCMC techniques, the prior is not constrained to

3



4 Overview

be conjugate to the model any longer. As claimed by Gelman (2016b), we often need

something in between a fully informative prior and a noninformative prior which is

expected to give good results for any possible parameter value. In fact, priors should

convey information, regularize and somehow restrict the parameter space. But in

many instances some noninformative priors might have a big effect on the inferences:

an example is given by the inverse gamma for the scale parameter in hierarchical mod-

els (Gelman et al., 2006). It is also not uncommon that an unrealistic informative

prior would tend to convey too much information.

Hierarchical models often represent a tool flexible enough for describing complex

problems. As suggested by Gelman et al. (2013), the common feature of such models

is that the observed units yij are indexed by the statistical unit i in group j. In gen-

eral, these observable outcomes are modeled conditionally on certain not observable

parameters θj, viewed as drawn from a population distribution, which themselves are

given a probabilistic (prior) distribution in terms of further parameters, known as

hyperparameters. The data are then used for estimating relevant aspects of the pop-

ulation distribution. Hierarchical modeling is often appropriate for grasping complex

data structures, as those provided by real problems. Furthermore, the population dis-

tribution may allow for different extents of dependence between the parameters and

its use is often encouraged to avoid overfitting. Unlike for non-hierarchical models,

it is in fact of common practice in the hierarchical framework using more parameters

than data points.

Combining data and prior beliefs is one of the main task of a Bayesian statistician

and the boundaries between the model and the data often turn out to overlap each

other, as in hierarchical models. With a growing complexity carried by real problems

and perhaps the need of more complicated models, the distinction in prior and likeli-

hood could suffer from a rigidity extent. New models are required and new structures

with hierarchical flavor are worth to be investigated through the development of new

classes of algorithms.

In this thesis we deal with issues arising from prior elicitation and hierarchical

modeling. Precisely, we focus on a particular class of prior distributions which might

depend on the data, and we adopt hierarchical Bayesian models for predicting quan-

tities related to soccer matches. This thesis may be then easily divided in two parts,

one more theoretical and another one with more applied flavor.
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Introduction 5

In the first part we develop a new class of data-dependent priors. The idea behind

our approach is that a Bayesian model is constituted by the pair prior-likelihood, and

this view is coherent with those model checking approaches in the Bayesian setting

in which the prior, as well as the likelihood, is seen as a potential source of model

misspecification. In other words, we mantain with Gelman and Shalizi (2013) that a

prior should be tested and is one of the assumption of the model.

We combine some existing insights and some separate theories about the use of

the data in the prior: the adjusted-data-dependent paradigm (Darnieder, 2011), the

approximation of a hierarchical model (Gelman, 2016a), and the specification of a

model for the tuning parameter in the penalized likelihood approach. The new class

consists of a mixture between a noninformative —baseline— prior distribution and

an informative prior, where the mixture weights represent a sort of hyperparameter

estimated through the data. This new formulation allows for assessing the robustness

of a Bayesian model, usually achieved by the use of mixture priors, and the quantity

of information provided by a prior distribution. The underlying idea is inspired by

Gelman (2016b), who claims that we need something in between a ‘wildly unrealistic

in most settings prior informative distribution and a noninformative prior, feasible

only in settings where data happen to be strongly informative about all parameters”.

The amount of information carried by a prior distribution is relevant for us. In

several frameworks the sample size is large enough to neutralize the impact of an

informative prior. Conversely, when the sample size is ‘small’ it is not trivial to

elicit an informative prior that does not dominate the inference. In our theoretical

framework, we explicitely assume that the data size is likely to be not sufficiently large

for neutralizing the impact of such a prior. Eliciting an informative prior distribution

from historical data —as it is usual in medical studies, for instance— could result in

a mismatch between the prior and the observed data, the so called prior-data conflict

(Evans et al., 2006; Mutsvari et al., 2016).

Perhaps, our proposal merges together two separate approaches for eliciting a prior

distribution: the mixture specification (Mutsvari et al., 2016; Berger and Berliner,

1986; Schmidli et al., 2014), and the use of the data in the prior formulation. Sec-

tion 2.2 introduce different approaches for using data twice in Bayesian inference.

In Section 2.3 we introduce the Mixture Data-dependent (MDD) prior class, and

we describe the resampling algorithm and the natural procedure developed for es-

timating the mixture weights. Some theoretical results related to the hierarchical
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approximation, the use of distribution-constant statistics along with the notion of

effective sample size (Morita et al., 2008) are presented in Section 2.4. Simulation

studies for the univariate conjugate models are performed in Section 2.5, whereas

some nonstandard cases are briefly outlined in Section 2.6.

The second part of this thesis focuses on modeling some aspects of football (soccer)

using Bayesian hierarchical models. In these last years the interest on sport modeling

—both in terms of individual performance and team performance— is hugely growing.

The call for prediction and description tools is urgent and several techniques have

been developed with more or less success. In the first of our applied work on soccer,

we develop three hierarchical Bayesian models for the player ratings provided by a

popular Italian fantasy soccer game, used as proxies for the players’ performance.

Our central goals are to explore what can be accomplished with a simple freely

available dataset (comprising only a few variables) for the 2015–2016 season in the

top Italian league, Serie A, and to focus on a small number of interesting modeling

and prediction questions that arise. Chapter 3 is devoted to the first applied work on

soccer data. In Section 3.2 we take a brief overview on the fantasy game, describing

the so called point scoring system; data and notation for the hierarchical models are

presented in Section 3.3. The three models are proposed in Section 3.4, along with

some strategies to deal with missing data which arise in this framework and with some

considerations about the model identifiability. We present posterior estimates and a

fake-data simulation in Section 3.5, while a graphical variety of posterior predictive

checks along with some out-of sample predictions is proposed in Section 3.6.

Rather than modeling the individual performance in football, predicting the out-

come of a football match has been of interest for many authors since the last decades

of the XX century. According to the current literature, two choices are used for mod-

eling the home and the away goals between two competing teams: two conditionally

independent Poisson distributions (Maher, 1982; Baio and Blangiardo, 2010) or a

bivariate Poisson distribution (Karlis and Ntzoufras, 2003; Dixon and Coles, 1997).

Closely related to modeling the exact outcome, there is a huge literature regarding

the bookmakers betting odds. It is empirically known that betting odds are the most

accurate source of information for forecasting sports performances (Štrumbelj, 2014).

As far as we know, no authors used the betting odds as a part of a statistical model

for improving the predictive accuracy and the model fit. We try to fill the gap cre-
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ating a bridge between the betting odds —and betting probabilities— on one hand

and the statistical modeling on the other hand. Once we transform the betting odds

into precise probabilities, we develop a procedure to (i) infer from these the implicit

scoring intensities of the bookmakers (ii) use these implicit intensities directly in

the conditionally independent Poisson model for the scores, according to a Bayesian

perspective. In Chapter 4 we present the second applied work about soccer. The

notion of betting odd and the transformation methods are presented in Section 4.2.

In Section 4.3 we introduce the full model, along with the implicit scoring rates. The

results and the predictive accuracy of the model on the top-four European leagues

—Bundesliga, Premier League, La Liga and Serie A— are presented and discussed

in Section 4.4 and summarized through posterior probabilities and graphical checks.

Some preliminary betting strategies which reveal efficient profits are introduced in

Section 4.5.

1.2 Main contributions of the thesis

• Development of a new class of data-dependent priors. Precisely:

– the new class consists of a mixture between a noninformative —baseline—

prior distribution and an informative prior, where the mixture weights rep-

resent a sort of hyperparameter estimated through the data. Rather than

assigning the mixture weights a fixed value or an hyperprior distribution,

we let them to incorporate data dependence and we treat the weight asso-

ciated to the noninformative prior as a discrepancy measure between the

data and the assumed informative prior;

– we build our theoretical framework within the conjugate models and we

formally prove that under some mild regularity conditions the information

provided by a mixture distribution is never greater than the information

of an informative prior distribution;

– we perform some simulation studies which clearly show that this class may

be well suited for reducing the mean squared errors and for improving the

frequentist coverage;
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– we justify our class of priors as an approximation of a hierarchical model,

as a prior conditioned in some particular cases on a distribution-constant

statistic and as a sound alternative for specifying the tuning parameter in

the penalized likelihood approach.

• Development of three hierarchical Bayesian models for predicting the player

ratings provided by a popular Italian fantasy soccer game, used as proxies for

the players’ performance. We validate our models through graphical posterior

predictive checks and we provide out-of-sample predictions for the second half

of the season, using the first half as a training set. We use RStan to sample

from the posterior distributions via Markov chain Monte Carlo.

• Development of a hierarchical Bayesian model for predicting the exact outcome

of a football match using the past historical information and the weekly betting

odds provided by the prominent bookmakers. We apply our procedure to the

top-four European leagues —Bundesliga, Premier League, La Liga and Serie

A— along with a variety of graphical posterior predictive checks for the model

fit and a predictive accuracy analysis on hold-out data. Futhermore, we develop

a betting strategy which is associated to profitable betting opportunities.

8



Chapter 2

Mixture Data-Dependent priors

2.1 Introduction

Prior elicitation is the core of every Bayesian analysis. In principle, the prior should

represent the belief of the statistician before observing the data, but for several rea-

sons in the last decades many attempts for including data information in the elici-

tation process have been proposed. Roughly speaking, the resulting data-dependent

prior is just a prior that depends on the data and suffers from two main criticisms:

data are used twice and the calculus of the Bayes’ theorem may not be performed

directly.

Despite this evident contravention of the Bayesian philosophy, many statisticians

dealt with the double use of the data in Bayesian inference, and many others use data-

dependent priors for complex models. However, as invoked by Wasserman (2000)

almost twenty years ago, a theoretical justification for these distributions is missing

and the need for data-dependent priors may become more common as the complexity

for applied problems increases. Apparently, the call for the data-dependent Bayesians

did not remain silent in these last years. As far as we can tell from reviewing the lit-

erature, we may recognize at least three frameworks for justifying the data-dependent

approach within the Bayesian inference: interpreting these priors as an approximation

of a hierarchical model through the estimation of some hyperparameters (Gelman,

2016a); the definition of an adjusted data-dependent paradigm allowing for the Bayes’

Theorem computation (Darnieder, 2011); and the definition of a data-dependent prior

as a measurable function from the data space Ym to the set of priors P (Wasserman,

2000). In this chapter we propose a class of data-dependent prior distributions that

9



10 2.1. INTRODUCTION

may be theoretically justified under all these frameworks. Moreover, the methodology

presented in this chapter may be interpreted also in terms of a penalized likelihood

framework (Cole et al., 2013) for regression models, where the penalty term is the ker-

nel of a prior distribution and the weight of such penalization is not fixed in advance

—as it happens for instance through cross-validation or empirical Bayes techniques.

The idea behind our approach is that a Bayesian model is constituted by the pair

prior-likelihood. This view is coherent with those model checking approaches in the

Bayesian setting in which the prior, as well as the likelihood, is seen as a potential

source of model misspecification. In other words, unlike in the traditional paradigm

of Bayesian inference where the only characteristic a prior must have to be justified is

that it represents someone prior beliefs, we agree with Gelman and Shalizi (2013) that

a prior should be tested and is one of the assumption of the model. If we take this

kind of approach, that is, we admit that the prior can be (judged to be) misspecified,

we imply that the prior is checked against the data and we may change it depending

upon the results of this check (perhaps in an informal way: as it would occur if

we visually inspect a PP plot and decide for a different prior not envisaged before).

Thus, we are using the data for eliciting the prior, albeit possibly in an implicit and

informal way. And this represents another way for saying that the prior can only be

understood in the context of the likelihood (Gelman et al., 2017).

Why proposing a new data-dependent prior formulation? We acknowledge at least

two reasons. From a Bayesian point of view, we want to investigate the information’s

extent of a prior distribution, and our proposal follows the words of Gelman (2016b),

when he says that we need a compromise between the information carried by a “wildly

unrealistic in most settings prior informative distribution and a noninformative prior,

feasible only in settings where data happen to be strongly informative about all param-

eters”. And from a broader statistical point of view, we are interested in the global

quality of the model and on the assumptions we propose, and we believe our prior

might be a good solution in case of model/prior misspecification.

According to the first argument, we are aware that the use of informative priors —

or, at least, weakly informative priors (Gelman et al., 2008)— is strongly encouraged

by subjectivist Bayesians, especially when a prior information for a specific applica-

tion is actually available. However, even if the model is simple, when the sample size

is ‘small’ it is not trivial to elicit an informative prior that does not dominate the in-

ference. Using an informative prior distribution elicited from historical data —as it is

10



Chapter 1 - Mixture Data-Dependent priors 11

usual in medical studies, for instance— could result in a mismatch between the prior

and the observed data, the so called prior-data conflict (Evans et al., 2006; Mutsvari

et al., 2016). Thus, it emerges clearly that measuring the information contained in

a prior distribution is not referred only as a mathematical exercise, but turns out to

be helpful in terms of inference and prediction purposes. For instance, Morita et al.

(2008) developed the so called prior effective sample size (ESS), an index which mea-

sures the amount of information contained in a proposed prior distribution π for the

parameter θ, computed with respect to a posterior qm(θ|y) resulting from a baseline

prior πb, with πb less informative than π. When fitting a Bayesian model to a dataset

consisting of 10 observations, an effective sample size of 1 is reasonable, whereas a

value of 20 implies that the prior, rather than the data, dominates the inference: with

a few data, there is the risk of being ‘too much informative’.

Motivated by these considerations, our method uses data for dealing directly with

the priors’ construction. In what follows, we assume to be able to elicit a noninforma-

tive and an informative prior. Our procedure measures the discrepancy between the

data and the informative prior. Depending on the sample size of the data at hand, we

may need a resampling from the supposed true model, in order to neutralize the im-

pact of the informative prior. The corresponding value of such a distance —bounded

in the interval [0, 1]— is plugged into a two-components mixture of the two priors

mentioned above. The greater is this value, the farther are the data (simulated and

real) from the informative prior, and consequently the stronger is the influence of

the diffuse prior in our specification. We prove that the so obtained class of mixture

priors —hereafter MDD priors— satisfies some nice properties. Among these, the

distributions of this class always have a closed form in conjugate models and preserve

the conjugacy. Under mild conditions, they yield a lower effective sample size than

that provided by the informative prior —substantially, they provide less information.

Moreover, evidences from simulation studies show that they may also yield lower

mean squared errors and improve the frequentist coverage.

It is worth noting that the use of mixture priors —possibly with one relative

precise component and the other more vague— is not a novelty in Bayesian statistic.

They have been introduced for making the inference robust in terms of a Bayesian

perspective (Berger and Berliner, 1986), and developed for assessing any prior-data

conflict (Schmidli et al., 2014; Mutsvari et al., 2016). A mixture specification turns out

to be useful also in Bayesian variable selection: a ‘spike and slab’ prior (Miller, 2002)

11
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with fixed hyperparameters is assigned to the regression coefficients in the stochastic

search variable selection approach —see O’Hara et al. (2009) for an overview on

variable selection methods.

The chapter is organized as follows. Section 2.2 reviews the existing data-dependent

approaches and presents in a few details the frameworks proposed by Darnieder

(2011) and Gelman (2016a); moreover, this section puts also in evidence the con-

nection between the double use of the data and the penalized likelihood methods

under a Bayesian perspective. In Section 2.3 we introduce the MDD density class

and describe the resampling algorithm and the natural procedure required for build-

ing these priors. After introducing the notion of effective sample size, in Section 2.4

we focus on some theoretical results for the MDD priors; still, in this section we

put in evidence the distribution-constant behavior of the Hellinger distance in some

special cases, if used as discrepancy measure. The information for the proposed class

of priors is discussed in two examples for non standard models in Section 2.6: an

exponential model with a Jeffreys prior and a logistic regression for determining the

greatest amount of tolerable dose in phase I trial. Section 2.7 concludes.

2.2 Using data twice in Bayesian inference

The commonly used expression ‘using data twice’ in some Bayesian procedures does

not mean nothing really precise, actually. However, it is not of interest for us taking

an overview on all those tools which make use of the data twice for checking the fit of

the model —posterior predictive checkings, posterior Bayes fators, etc.— or reviewing

the empirical Bayes methods (Carlin and Louis, 2000). In this section we focus on

those priors’ procedures which explicitly consider data in the elicitation process.

As widely known, using data or the data mechanism process in the priors’ elic-

itation is not properly Bayesian and suffers from two main criticisms: using data

twice and not allowing for the direct computation of the Bayes’ Theorem. How-

ever, some authors have attempted to circumvent these criticisms. In what follows,

we take a brief overview on some existing data-dependent approaches. Firstly, we

present the theoretical framework proposed by Darnieder (2011), who formalized the

so called Adjusted Data-dependent Bayesian paradigm, a new approach which intro-

duces an adjustment in order to obtain a proper Bayesian inference starting from a

data-dependent prior. Then, we present and formalize the considerations presented

12



Chapter 1 - Mixture Data-Dependent priors 13

by Gelman (2016a), who proposed to approximate a hierarchical model by using a

data-dependent prior. We refer at Wasserman (2000) and Richardson and Green

(1997) for the formulation of data-dependent priors that yield proper posteriors for

finite mixture-models.

Finally, we draw a parallel between data-dependent priors and the penalized likeli-

hood methods commonly used in Bayesian variable selection. Although this chapter

does not explicitly take in consideration regression models, it is of future interest

for us to implement our procedure also for regression purposes, and we consider this

subsection as a grounding motivation for future work.

2.2.1 Darnieder’s approach

Let y denote the sample, θ the vector of parameters and T (y) a statistic. Let

π(θ|T (y)) denote a data-dependent prior which depends on the data through the

statistic T (y). Darnieder (2011) espresses the joint probability density of (θ,y, T (y))

as:

p(θ,y, T (y)) =p(T (y)|θ,y)π(θ|y)m(y)

=f(y|θ, T (y))π(θ|T (y))m(T (y)),

where m(y) is the marginal (or integrated) likelihood. By isolating the posterior

distribution on the left side, we obtain

π(θ|y) = f(y|θ, T (y))π(θ|T (y))m(T (y))

p(T (y)|θ,y)m(y)
. (2.1)

Now, we observe that given y, T (y)|θ,y is not random, and that the ratio

m(T (y))/m(y) depends only on the observed data. Hence, we may write the above

expression as

π(θ|y) ∝ f(y|θ, T (y))π(θ|T (y)). (2.2)

As stated by Darnieder (2011), the posterior in (2.2) is obtained through a naive

approach. The equation is suggesting that, if a data-dependent prior is used, then,

in order to derive a proper posterior, also the likelihood of the model should be

conditioned on the statistic T (y). This formula is mathematically appealing, but the
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update of π(θ|T (y)) is often not straightforward. Hence, after some simple algebra,

the posterior may be expressed as

π(θ|y) ∝ f(y|θ)π(θ|T (y))
g(T (y)|θ) = f(y|θ)π(θ|T (y))

g(T (y)|θ) , (2.3)

where the ratio π(θ|T (y)/g(T (y)|θ) is the actual data-dependent prior, updated

with the usual unconditioned likelihood f(y|θ). Darnieder (2011) defines the poste-

rior in (2.3) as an adjusted posterior, obtained through an adjusted procedure. He also

shows a relationship between a genuine Bayesian approach and the data-dependent

Bayesian approach, putting in evidence the following identity:

1 =
π(θ|y)m(y)

f(y|θ)π(θ) =
π(θ|T (y))m(T (y))

g(T (y)|θ)π(θ) . (2.4)

By multiplying this expression by the genuine prior π(θ), we can state the following

proportionality, the so called data-dependent Bayesian Principle:

π(θ|y)
f(y|θ) ∝ π(θ|T (y))

g(T (y)|θ) , (2.5)

which formally coincides with (2.3), but suggests something even stronger. In fact,

this expression highlights that the principle is satisfied whether a genuine prior π(θ)

exists or not. With the adjusted procedure we provide a posterior distribution which

is directly implied by Bayes’ Theorem, whatever is the choice for π(θ).

A natural question concerns the choice of the statistic T (y). There are no par-

ticular guidelines for choosing T (y), but Darnieder (2011) lists some theorems that

are useful for this aim. For example, it is trivial to show that if T (y) is sufficient

for y, then the data-dependent prior π(θ|T (y)) coincides with the genuine posterior

π(θ|y). And the following theorem in case of a distribution-constant statistic T (y)

will be useful later.

Theorem 1. Suppose T (y) is distribution-constant for θ, then the naive expres-

sion (2.2) and the adjusted expression (2.3) coincide. Furthermore, the data-dependent

prior π(θ|T (y)) coincides with the genuine prior π(θ).

For a quick proof see the Appendix A. As suggested by Darnieder (2011), it is

hard to imagine a beneficial conditioning on a distribution-constant statistic, unless

for those priors which depend only on the data sample size. However, in Section 2.4 we
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will use this result for showing that, within some particular cases, our data-dependent

prior procedure only depends on the sample size of our dataset.

2.2.2 Gelman’s approach

Gelman (2016a) draws an appealing framework considering the data-dependent priors

as an approximation of a hierarchical model. He moves from a concrete example of

regression models with standardized predictors: rescaling a bunch of predictors based

on the data and then putting informative priors on their coefficients means eliciting a

prior that depends on the data. He does not go in depth with mathematical notation,

but we consider relevant to formalize this setup.

As usual in hierarchical models (Gelman, Carlin, Stern and Rubin, 2014), let y

represent the data, with yij the observed value for the units i in group j, i = 1, . . . ,m,

j = 1, . . . , J ; let θ = (θ1, . . . , θJ) denote the generic vector of parameters and φ the

vector of hyperparameters. The likelihood of the model is p(y|θ). The joint prior

distribution for (θ,φ) is

π(θ,φ) = π(φ)π(θ|φ),

and the joint posterior distribution is

π(θ,φ|y) ∝ π(θ,φ)p(y|θ,φ) = p(y|θ)π(θ|φ)π(φ), (2.6)

with the further assumption that the hyperparameter φ affects y only through θ.

In a full Bayesian model, φ is not known and is assigned a prior distribution p(φ);

however, in some circumstances it may be possible to consider φ as known, or estimate

it. As in the Gelman’s example, if this hyperparameter, say a population parameter, is

estimated from the data, then we denote this estimate with φ(y) and the population

distribution π(θ|φ) reduces to π(θ|φ(y)), which actually is a data-dependent prior.

If we replace φ with an estimate, θ still preserves the dependence from φ(y), but the

joint posterior distribution in (2.6) reduces to the following approximate posterior,

π(θ,φ(y)|y) ∝ π(θ|φ(y),y)π(φ(y)|y) ∝ π(θ|φ(y),y), (2.7)

where π(θ|φ(y),y) may be interpreted as the marginal approximate posterior

for θ —analogous to the pseudo-posterior distribution in empirical Bayes methods
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(Petrone et al., 2014), where φ(y) is usually obtained through marginal maximum

likelihood estimation. We may derive an explicit form for this quantity by applying

the Bayes’ Theorem and the assumption p(y|θ,φ(y)) = p(y|θ):

π(θ|φ(y),y) ∝ p(y|θ,φ(y))π(θ,φ(y)) ∝ p(y|θ)π(θ|φ(y)). (2.8)

The comparison between this latter expression and (2.6), (2.7) highlights the re-

lationship existing between a full Bayesian hierarchical model and an approximate

hierarchical model, where φ(y) naturally acts in place of φ and Bayes’ Theorem

is guaranteed by the product between the usual likelihood and the data-dependent

prior π(θ|φ(y)). The framework above has the merit of interpreting a data-dependent

prior as an approximation of a further level of hierarchy within hierarchical models,

through the use of a data-statistic φ(y) as a plug-in estimate for the hyperparameter

φ; moreover, it introduces the definition of a pseudo-posterior π(θ|φ(y),y).

2.2.3 Wassermann’s approach

The general theoretical framework of interest for Wasserman (2000) refers to finite

mixture models. In this situation he justified a data-dependent approach from a

practical point of view, proposing a prior distribution which yields a proper posterior

with good frequentist properties. He shows in fact that the only priors that produce

intervals with second-order correct coverage are data-dependent. However, his prac-

tical interest serves as a first step for deriving a general theory of data-dependent

priors: despite their use in many contexts, he underlined that they miss a theoretical

formalization.

For simplicity, here we take a simple mixture model with standard gaussian dis-

tributions and with two possible groups. Let ym = (y1, ..., ym) be iid with density for

the single value yi

fµ(yi) =
1

2
φ(yi) +

1

2
φ(yi − µ), (2.9)

where φ denotes here the usual standard normal density. The likelihood of the

model is then

Lm(µ;ym) =
m
∏

i=1

fµ(yi) =
m
∏

i=1

[

1

2
φ(yi) +

1

2
φ(yi − µ)

]

(2.10)

16



Chapter 1 - Mixture Data-Dependent priors 17

Choosing an improper prior π(µ) ∝ 1 in (2.9) yields an improper posterior, i.e.

∫

Lm(µ;ym)π(µ)dµ = ∞. (2.11)

Nevertheless, choosing a proper prior could dominate the inference creating an

unacceptable bias. Wasserman (2000) introduced a data-dependent prior πm(µ) as a

measurable function from the sample space Ym to the set of the priors P , defined as

the set of all the non-negative, measurable, bounded, twice differentiable functions on

the real line. The idea of Wasserman is that of multiplying the usual Jeffreys (1998)

prior by a factor depending on the data at hand. Before proceeding, let us review some

basic theory about the Jeffreys prior formulation. Let S(µ, Y ) = ∂[log fµ(Y )]/∂µ be

the score function for a random variable Y and let Iµ = E[S2(µ, Y )] be the Fisher

information. The Jeffreys prior is defined as

j(µ) = I1/2µ . (2.12)

Now we may introduce the Wasserman’s prior. Let µ0 denote the true value of µ,

let

D(µ0, µ) =

∫

fµ0 log(fµ0/fµ)dµ (2.13)

be the Kullback-Leibler distance between fµ0 and fµ, and let a(µ0) = supµ0{D(µ0, µ)}.
Then, define

Dm(µ0, µ) =
1

m

m
∑

i=1

log{fµ0(yi)/fµ(yi)}. (2.14)

Finally, we may introduce the Wasserman’s prior as

πm(µ) = j(µ)cm(µ), (2.15)

with cm(µ) = 1 − exp[−m{a(µ0) − Dm(µ0, µ)}]. Since the quantity a(µ0) −
Dm(µ0, µ) does not depend on µ0, the prior (2.15) depends on the data but not

on the true value of the parameter. Furthermore, Wasserman (2000) proved that the

proposed prior generates a proper posterior, is second order correct and that the data

dependence of πm(µ) vanishes asymptotically, as m→ ∞.

17



18 2.2. USING DATA TWICE IN BAYESIAN INFERENCE

2.2.4 Penalized likelihood

In the penalized likelihood approaches for regression models —Lasso (Tibshirani,

1996), Ridge regression, Bridge regression— it is usual to penalize some coefficients

by inducing a certain amount of shrinkage in order to (i) overcome problems in the

stability of parameter estimates due to a relatively flat likelihood and (ii) reduce the

global mean squared error. A penalized log-likelihood with quadratic penalization is

logL(β,y)− r

2
(β − g)2, (2.16)

where β = (β1, ..., βJ) is the vector of regression parameters, g = (g1, ..., gJ) is a

vector of values which should be good guesses for the vector parameter β or corre-

spond to a reference model (for inference in spline estimation they may correspond

to a constant or a straight line), and r is usually called the tuning parameter. Per-

haps, (β − g)2 =
∑J

j=1(βj − gj)
2 is the quadratic penalty in the Ridge regression.

The formula above may be easily interpreted in a Bayesian perspective. In fact, if

we adopt the prior βj ∼ N (gj, 1/r), then (2.16) represents a log-likelihood penalized

by the log-density of the prior distribution for βj, where r is the precision (the in-

verse of the prior variance). Thus, the quadratic log-likelihood penalization reduces

to eliciting independent normal priors for the regression parameters with prior mean

gj and prior variance 1/r. The ordinary Lasso of Tibshirani can be interpreted as a

Bayesian Lasso (Park and Casella, 2008), i.e. as a Bayesian posterior mode estimate

when regression parameters have Laplace independent priors. And more generally

Bridge regression is a direct generalization for Lasso and Ridge regression, where the

penalty is (β−g)q for some q ≥ 0 (q = 1 corresponds to the ordinary Lasso, q = 2 to

the Ridge regression). Many approaches for estimating the tuning parameter r have

been proposed: cross-validation, general cross-validation, empirical Bayes methods

through marginal maximum likelihood estimation. But only assigning a diffuse hy-

perprior is purely Bayesian. Using data for estimating the tuning parameter makes

in fact the Bayesian penalized log-likelihood approach affected by the data process

and, more precisely, the prior on β affected by the data. In Section 2.4 we put in

evidence that our methodology allows for a hierarchical approximation and may be

also justified in terms of log-likelihood penalization. We will still interpret the penal-

ized likelihood under a Bayesian point of view, but allowing the tuning parameter to

depend on the data.

18
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2.3 Mixture Data-dependent priors

Let ym = (y1, ..., ym) be a data vector from a given sampling distribution f(ym|θ),
with θ ∈ R. Let πb(θ) denote a diffuse prior distribution for θ —hereafter called base-

line prior— and suppose that, from a preliminary knowledge about the problem (for

instance historical information), we are somehow able to assign a more informative

prior distribution π(θ). When data consist of a relatively small number of observa-

tions, the choice between these two priors’ options is not trivial, since the support

and the shape of the posterior are sensitive to the choice of the prior distribution.

Thus, the information contained in the prior could be dominant when the dataset is

small. This is one of the reasons for combining our previous information about the

problem with our data at hand —-or, with an augmented version of it, as will be clar-

ified later— and proposing a data-dependent approach for eliciting a particular class

of mixture prior distributions. We may then introduce the mixture data-dependent

(MDD) prior ϕ(θ) with mixture weight ψm∗ as

ϕ(θ) = ψm∗πb(θ) + (1− ψm∗)π(θ), (2.17)

belonging to the corresponding MDD class

Φ = {ϕ : ϕ(θ) = ψm∗πb(θ) + (1− ψm∗)π(θ), θ ∈ Θ, 1 ≥ ψm∗ ≥ 0, m∗ ∈ N}.

The MDD prior (2.17) may then be viewed as a compromise between an informa-

tive prior and a noninformative one, with weight ψm∗ which represents a discrepancy

measure between the informative prior and the data with global length m∗ —we refer

at the next subsection for the meaning of the symbol m∗. As will be more clear in

what follows, the data dependence of this class is represented by the mixture weight

ψm∗ . Note that mixture priors designed for overcoming the prior-data conflict and

for robustness purposes have been already proposed by Mutsvari et al. (2016) and

Schmidli et al. (2014): however, the authors do not propose any procedure for com-

puting/assigning the mixture weights, and this is a crucial point for us, as explained

in the next section.

2.3.1 The resampling algorithm for the mixture weigths

Assume to have observed the data vector ym and let introduce here the symbol

Ωm for the Hellinger distance H —closely related to the Bhattacharyya distance

19
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Figure 2.1: Normal-Normal model, resampling-algorithm, ǫ = 0.2. (Top)

f(ym|θ) = N (15, 10) (grey line), πb(θ) = N (20, 100), π(θ) = N (20, 1) and ϕ(θ) =

ψm∗N (20, 100)+(1−ψm∗)N (20, 1). The initial sample is set to m = 5. (Bottom row,

left) Baseline posterior qm(θ|ym), informative posterior πm(θ|ym), MDD posterior

ϕm(θ|ym) for the initial sample size m. The gray line is the density for the new val-

ues yκ generated under f(ym|θ∗). (Bottom row, right) Baseline posterior qm∗(θ|ym∗),

posterior πm∗(θ|ym∗), MDD posterior ϕm∗(θ|ym∗), for the sample size m∗ = m + κ,

here 18.
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Chapter 1 - Mixture Data-Dependent priors 21

(Bhattacharyya, 1946)— between the baseline posterior qm(θ|ym) and the informative

posterior πm(θ|ym):

Ωm ≡ H(qm(θ|ym), πm(θ|ym)) =
1√
2

(
∫

(q1/2m − π1/2
m )2dym

)1/2

. (2.18)

For any couple of density functions g, h, the Hellinger distance satisfies the prop-

erty: 0 ≤ H(g, h) ≤ 1. The basic idea of our procedure consists of weighting a pair of

priors π(θ), πb(θ) through a discrepancy measure between the proposed informative

prior and the data at hand. This measure of data-prior compatibility may be formu-

lated in several ways, as will be explained later. According to this task, we could rely

on the available data, conditioning on them for checking a misfit between the prior

and the likelihood. But for reasons that will be clarified later, we may need a sequen-

tial generation of further κ draws from the true model f(ym|θ0): the so obtained

augmented sample size m∗ = m + κ should be then large enough for neutralizing

the impact of the informative prior π, as is clarified below. The generic κ may be

seen as a tuning parameter which needs to be computed for the specification of the

mixture weight. Since the true model is unknown, we decide to generate from an

approximation of the true model. Then, we may have the following situations:

(1) y1, . . . , ym ∼ f(ym|θ0) (no resampling),

(2) y1, . . . , ym ∼ f(ym|θ0); generate ym+1, . . . , ym+κ ∼ f(ym|θ̂0),

where f(ym|θ∗) is the likelihood evaluated for θ∗ ∼ π(θ), θ̂0 is an estimate for the

true parameter θ0, and κ is the dimension of the augmented dataset for (2). In most

of the statistical applications the true parameter value is unknown and needs to be

estimated. Among the others, one possibility is that of using the maximum likeli-

hood (ML) estimate θ̂0, obtained equating at zero the log-derivative of the sampling

distribution. Thus, for (2) we re-compute (2.18) for each new draw and we stop the

procedure when a certain condition of similarity between the posterior distributions

πm and qm is satisfied. Precisely, the stop condition is expressed by

κ = inf {k ∈ N |Ωm+k < ǫ, ǫ > 0} (2.19)

21



22 2.3. MIXTURE DATA-DEPENDENT PRIORS

for a fixed tolerance ǫ, with ǫ > 0. This posterior similarity may be seen as an

approximate matching between the proposed posterior distributions 1. The use of

the Hellinger distance is appropriate for some nice theoretical properties, as will be

clarified in Section 2.4, and for being defined in [0, 1]. However, other measures of

discrepancy as the Kullback-Leibler divergence or the Bhattacharyya distance could

be adopted. As suggested above, the factor ψm∗ computed for the augmented sample

with length m∗ in (2.17) measures the observed discrepancy between the informative

prior π and the data. According to situations (1) and (2), we propose two possible

discrepancy measures:

(1*) Ψm∗ ≡ H(π(θ), πm(θ|ym)), m
∗ = m,

(2*) Ψm∗ ≡ H(f(ym|θ̂(m
∗)

0 ), f(ym|θ∗)), m∗ = m+ κ.

The first equation is the Hellinger distance between the informative prior and

the informative posterior for the data at hand. The second equation measures the

discrepancy between the sampling distribution for the augmented set of data, where

θ̂
(m∗)
0 is the ML estimate for θ0 based on y1, . . . , ym, ym+1, . . . , ym∗ , and the same

sampling distribution evaluated in terms of the informative prior, since θ∗ ∼ π(θ).

As mentioned above, resampling may result to be beneficial in some applications, as

will be shown later. But it could be also demanding in terms of computational times

whenever the required sample size for matching the posterior distribution —perhaps,

for neutralizing the impact of a misspecified informative prior— results extremely

large. The MDD priors built respectively under procedures (1)-(1*) and (2)-(2*) are

called natural —hereafter MDD-natural— and with resampling-algorithm —hereafter

MDD-res.

Resampling-algorithm

Given y1, ..., ym ∼ f(ym|θ), generate θ∗ ∼ π(θ).

Fix the tolerance ǫ, with ǫ > 0.

Given Ψm ≡ H(f(ym|θ0), f(ym|θ∗)), Ωm ≡ H(qm(θ|ym), πm(θ|ym)), compute the

observed value ωm. If the true value θ0 is unknown, provide an estimate for it.

If ωm > ǫ set k = 1.

1Note that the idea of matching the posterior uncertainty carried by two different posteriors does

not represent a novelty, and a procedure based on the average posterior uncertainty is proposed by

Reimherr et al. (2014).
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△ generate ym+k from f(ym|θ̂(k)0 ). Given

Ψm+k ≡ H(f(ym|θ̂(k)0 ), f(ym|θ∗))
Ωm+k ≡ H(qm+k(θ|ym+k), πm+k(θ|ym+k))

with θ̂
(k)
0 the ML estimate for θ0 at step k.

△△ Compute the observed values ψm+k, ωm+k.

while {ωm+k > ǫ} set k = k + 1 and go back to △.

Save ψm+κ, ωm+κ and the new sample size m∗ = m+κ. Set the prior (2.17) with

ψm∗ .

For illustration purposes only, Figure 2.1 displays a graphical example for the

MDD prior and posterior (blue lines) obtained through the resampling-algorithm for

a simple Normal-Normal model, where the baseline variance is set to 100 and the

informative variance is set to 1, ǫ = 0.2. The computation of the Hellinger distance

has been obtained through the R function HellingerDist of the distrEx package

(Kohl et al., 2007).

2.3.2 Justification for resampling

Given any pair of density functions f, g, let consider the following equivalent formu-

lation for the Hellinger distance:

H(f, g) =
1√
2

(
∫

(f 1/2 − g1/2)2dym

)1/2

=

=
1√
2

(
∫

fdym +

∫

gdym − 2

∫

[fg]1/2dym

)1/2

=

(

1−
∫

[fg]1/2dym

)1/2

,

(2.20)

where the last integral in (2.20) is also called affinity (Van der Vaart, 1998).

Now, suppose that the data vector y1, . . . , ym may derive from one among the above

densities, where f = N (θ0, 1) and g = N (θ∗, 1), with θ∗ ∼ π(θ). For simplicity, let

consider m∗ = m. Then, the squared Hellinger distance is:
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24 2.3. MIXTURE DATA-DEPENDENT PRIORS

H2(f, g) ≡ ψ2
m∗ = 1−

∫

[fg]1/2dym =

= 1−
∫

1√
2π

exp {−1

4
(
∑

i

y2i +mθ20 − 2mȳθ0 +
∑

i

y2i +mθ∗2 − 2ȳmθ∗})dym =

= 1−
∫

1√
2π

exp {−1

2
(
∑

i

y2i +
1

4
m(θ∗2 + θ20 + 2θ∗θ0)−mȳ(θ∗ + θ0))}·

· exp {−1

2
(
1

4
m(θ∗2 + θ20 + 2θ∗θ0)} exp {

1

2
mθ∗θ0}dym =

= 1− exp {−1

2
(
1

4
m(θ∗2 + θ20 + 2θ∗θ0)} exp {

1

2
mθ∗θ0} =

= 1− exp {−1

2
(
1

4
mθ20 +

1

4
mθ∗2 − 1

2
mθ∗θ0)} =

= 1− exp {−m
8
(θ∗ − θ0)

2}.

As m → ∞, the quantity above approximates one, and then plugging ψm∗ = 1

in (2.17) means eliciting the noninformative prior. From this toy example, it emerges

that the more data at hand one has, the more reliable is the noninformative choice,

and this is intuitive. But, in this chapter we consider cases where we deal with small

samples: if we do not have enough data, we should generate them from the supposed

true model.

A rigorous argument for justifying our proposed algorithm moves from the theory

of the rescaling rates developed in Van der Vaart (1998). Given a sequence of models

{Pθm , θm ∈ Θ, m ∈ N}, for eachm we may be interested in testing the null hypothesis

H0 : θ = θ0 versus the alternatives θ = θm. The hypothesis testing approach is of

course not relevant in our procedure, but it is useful as a theoretical tool. The

L1-distance between two distributions Pθm , Pθ0 with densities pθm = dPθm/dµ and

pθ0 = dPθ0/dµ, for a given measure µ, is defined as

||Pθm − Pθ0 || =
∫

|pθm − pθ0 |dµ.

It is worth noting that ||Pθm − Pθ0 || → 0 if and only if H(pθm , pθ0) → 0. The

Lemma 14.31 in Van der Vaart (1998) states that if H2(pθ, pθ0) = O(|θ − θ0|α) as

θ → θ0, then, for any sequence of alternatives θm, ||Pθm −Pθ0 || is bounded away from

0 and ∞ when m1/α|θm − θ0| is bounded away from 0 and ∞. In the exponential

family models we have H2(pθ, pθ0) = O(|θ − θ0|2) and hence the rate of convergence

is
√
m. This last condition is another way for stating that H2(pθm , pθ0) = O(m−1),
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or, equivalently, H(pθm , pθ0) = O(m−1/2). Within exponential family models, for any

sequence of alternatives θm that does not converge at zero or diverge at ∞ as m grows,

the Hellinger distance is bounded between 0 and 1 and has a rate of convergence equals
√
m.

Our procedure sequentially generates new data ym+1, . . . , ym+κ, and at each k, k =

1, . . . ,κ we measure a distance between f(y|θ∗) and f(y|θ̂(k)), where θ∗ ∼ π(θ).

Translated in the Van der Vaart hypothesis testing framework, at each k our method

may be seen as a rude test of the null hypothesis H0 : θ = θ0 versus an alternative

H1 : θ = θk, where θk = θ0+hk depends on the k-th draw through a certain constant

hk. In the resampling-algorithm data are generated from f(ym|θ̂(k)0 ), where θ̂
(k)
0 is

an estimate for the true-value parameter θ0, usually unknown. The discrepancy

measure is defined as Ψk ≡ H(f(ym|θ̂(k)0 ), f(ym|θ∗)), k = 1, . . . ,κ, and this is simply

the Hellinger distance between two absolute continuous distributions, where the true

parameter is estimated at each k. Then, this algorithm consists in testing for each k

the null hypothesis H0 : θ = θ̂
(k)
0 versus the alternative H1 : θ = θ∗, where θ∗ ∼ π(θ).

Unlike for the natural procedure, the resampling method proposes a discrepancy

measure based on a data augmentation. Hence, Ψm∗ = O((m + κ)−1/2), where m is

fixed and κ may vary, and the rate of convergence is
√
m+ κ. Thus, sampling further

data, rather than using only the original sample with length m, guarantees an asymp-

totic rate of convergence for our discrepancy measure. Intuitively, the so obtained

observed discrepancy should really assess the reliability of the prior π, checking its

similarity with the data through resampled data generated from the supposed true

model.

2.4 Theoretical results for the MDD class: conju-

gate models

In this section we present some theoretical results for the MDD class presented in

Section 2.3 within the univariate conjugate models. Precisely, we introduce here

the notion of effective sample size proposed by Morita et al. (2008), showing that the

information of the MDD prior is always lower than the information of any informative

prior. Moreover, we frame the MDD prior class in the theoretical approaches of

Darnieder (2011) and Gelman (2016a), summarized in Section 2.2. According to the
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first reference, we review the notion of distribution-constant statistics and we put in

evidence that in some special cases —e.g. the Normal-Normal model, but generally

all the statistical models for which the Fisher information does not depend on the

parameter— the Hellinger distance is a distribution-constant statistic. This property

implies that in these special models our proposed methodology substantially reduces

to choosing a genuine prior.

Before proceeding, we introduce here a general vector notation that turns out to

be helpful in the following sections. Without any loss of generality, let θ ∈ R
d, denote

the parameters’ vector, with d ≥ 1. Let the symbols πb(θ), π(θ) denote as before

respectively a baseline prior and an informative prior for θ. Let m denote the generic

sample size and f(ym|θ) the likelihood for our sample ym = (y1, ..., ym). Finally, let

qm(θ|ym) denote the baseline posterior for our parameter θ. In Section 2.3 we used

the symbolsm for the initial sample size, κ for the sample size of the generated sample

of data and, consequently, m∗ = m + κ for the global dimension of the data vector,

comprising both the data at hand and those generated via resampling-algorithm. The

further technical assumptions are

Eπb
(θ) = Eπ(θ)

Corrπ(θi, θj) = Corrπb
(θi, θj), i 6= j

Varπb
(θj) >> Varπ(θj), j = 1, ..., d.

(2.21)

2.4.1 Effective sample size (ESS)

The idea of measuring and quantifying the amount of information contained in a prior

distribution is of a great theoretical appeal. Nevertheless, it has not yet been studied

by many authors and many technical difficulties arise, including the impossibility

of encompassing in a unique philosophical and mathematical framework the task of

assessing the impact of a prior distribution: several distance measures and many

definitions of prior sample size may be in fact adopted. In what follows we will refer

to the work of Morita et al. (2008), who defined the prior effective sample size (ESS)

of π(θ), with respect to the likelihood f(ym|θ) as that integer m which minimizes the

distance between π(θ) and the baseline posterior qm(θ|ym). To define this distance,

they used the negative second partial derivatives of the log-densities (the observed
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Table 2.1: θ ∈ R, c ≥ 1. Suppose ym = (y1, ..., ym) ∼ f(ym|θ). Prior π(θ), base-

line prior πb(θ), MDD prior ϕ(θ), likelihood f(ym|θ), baseline posterior qm(θ|ym)

and MDD posterior ϕm(θ|ym) for the univariate conjugate models: Normal-Normal

(NN), Gamma-Poisson (GP), Gamma-Exponential (GExp) and Beta-Binomial (BB).

Following Gelman, Carlin, Stern and Rubin (2014), we denote N (µ, σ2), Ga(α, β),
Be(α, β), Bin(n, θ), Pois(θ) and Exp(θ) for the normal, gamma, beta, binomial,

Poisson and exponential distributions. For the Normal-Normal model let µ̄(τ 2) =

( µ
τ2

+ m
σ2 ȳ)/(

1
τ2

+ m
σ2 ) denote the posterior mean in function of the prior variance τ 2,

and τ̄ 2(τ 2) = ( 1
τ2

+ m
σ2 )

−1 the posterior variance in function of the prior variance τ 2.

NN GP

πb(θ) N (µ, cτ2) Ga(αc ,
β
c )

π(θ) N (µ, τ2) Ga(α, β)
ϕ(θ) ψm∗N (µ, cτ2)+ ψm∗Ga(αc ,

β
c )+

(1− ψm∗)N (µ, τ2) (1− ψm∗)Ga(α, β)
f(ym|θ) N (θ, σ2) Pois(θ)

qm(θ|ym) N (µ̄(cτ2), τ̄2(cτ2)) Ga(αc +
∑

yi,
β
c +m)

ϕm(θ|ym) ψm∗N (µ̄(cτ2), τ̄2(cτ2))+ ψm∗Ga(αc +
∑

yi,
β
c +m)+

(1− ψm∗)N (µ̄(τ2), τ̄2(τ2)) (1− ψm∗)Ga(α+
∑

yi, β +m)

GExp BB

πb(θ) Ga(αc ,
β
c ) Be(αc ,

β
c )

π(θ) Ga(α, β) Be(α, β)
ϕ(θ) ψm∗Ga(αc ,

β
c )+ ψm∗Be(αc ,

β
c )+

(1− ψm∗)Ga(α, β) (1− ψm∗)Be(α, β)
f(ym|θ) Exp(θ) Bin(m, θ)
qm(θ|ym) Ga(αc +m, βc +mȳ) Be(αc +mȳ, βc +m−mȳ)

ϕm(θ|ym) ψm∗Ga(αc +m, βc +mȳ)+ ψm∗Be(αc +mȳ, βc + (m−mȳ))+

(1− ψm∗)Ga(α+m,β +mȳ) (1− ψm∗)Be(α+mȳ, β +m−mȳ)
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Table 2.2: θ ∈ R, c ≥ 1, m is the generic sample size. Negative second derivatives of the

log-densities and effective sample sizes for the baseline prior πb(θ), the informative prior

π(θ) and the MDD prior ϕ(θ), for the four univariate conjugate models. Let θ̄ = Eπ(θ)

denote the plug-in estimate. See Table 2.1 for the priors’ specification.

NN GP GExp BB

Dπb
(θ) 1/cτ2 (α/c−1)

θ̄2
(α/c−1)

θ̄2
(αc − 1) 1

θ̄2
+ (βc − 1) 1

(1−θ̄)2

Dπ(θ) 1/τ2 (α− 1)θ̄−2 (α− 1)θ̄−2 (α−1)

θ̄2
+ (β−1)

(1−θ̄)2

Dq(m, θ,ym) m/σ2 (α/c+
∑

yi−1)

θ̄2
(α/c+m−1)

θ̄2
(α
c
+
∑

i yi−1)

θ̄2
+

(β
c
+m−

∑
i yi−1)

(1−θ̄)2

ESS(πb(θ)) σ2/cτ2 0 0 0

ESS(π(θ)) σ2/τ2 α−α/c
ȳ α− α/c α+ β

informations):

Dπ,j(θ) = −∂
2 log(π(θ))

∂θ2j
, Dq,j(m,θ,ym) = −∂

2 log(qm(θ|ym))

∂θ2j
, j = 1, ..., d. (2.22)

In what follows, we will sometimes use the simplified notations π, qm in place

of π(θ), qm(θ|ym) and Dπ,j, Dqm,j in place of Dπ,j(θ), Dq,j(m,θ,ym). Let Dπ,+ =
∑d

j=1Dπ,j and Dqm,+ =
∑d

j=1

∫

Dqm,jf(ym)dym denote the global information for

the prior π and the posterior qm, respectively. The distance between the prior and

the posterior for the sample size m is then defined as

δ(m, θ̄, π, qm) = |Dπ,+(θ̄)−Dqm,+(θ̄)|, (2.23)

evaluated in θ̄ = Eπ(θ), the prior informative mean. The ESS for π is defined as

ESS(π(θ)) = Argmin
m∈N

{δ(m, θ̄, π, qm)}. (2.24)

When d = 1, we will simply write Dπ, Dqm , suppressing the subscript ‘+’. Ta-

ble 2.1 shows an example of the priors and the posteriors for four univariate conjugate

models: Normal-Normal, Gamma-Poisson, Gamma-Exponential and Beta-Binomial.

Note that, under the assumptions in (2.21), the baseline prior mean corresponds to

the informative prior mean, and the hyperparameter c is a large constant chosen to

inflate the variance of the informative prior. Table 2.2 reports the distances and the

effective sample sizes for these univariate conjugate models. Similarly to the gen-
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eral expression in (2.23), the distance between the MDD prior ϕ(θ) and the baseline

posterior qm(θ|ym) evaluated in θ̄ = Eπ(θ) is defined as

δ(m, θ̄, ϕ, qm) = |Dϕ(θ̄)−Dqm(θ̄)|, (2.25)

where Dϕ has not in general a closed form and may be computed through an

R routine. The effective sample size ESS(ϕ(θ)) is computed for the MDD prior

analogously as in (2.24). For the univariate conjugate models the following theorem

holds.

Theorem 2. Given θ ∈ R, the likelihood f(ym|θ), an informative prior π(θ), a

baseline prior πb(θ), the baseline posterior qm(θ|ym) and the MDD prior ϕ(θ) defined

in (2.17), assume to be in a conjugate case and that the technical conditions in (2.21)

hold. Then

ESS(ϕ(θ)) ≤ ESS(π(θ)) (2.26)

For a formal proof, see Appendix A. Formula (2.26) provides an upper bound

for the effective sample size of the MDD prior class, and yields an intuitive result.

Although an analytic form of the ESS for this class of priors is not available, the

interpretation is that whatever are the observed weights and the priors πb, π used in

the formulation, the information contained in the MDD prior is never greater than

the information contained in π. From a practical point of view, this prior distribution

provides a lower information than that contained in the prior π, and is then more

likely to not dominate the likelihood.

As will be more clear from the simulation studies in Section 2.5, the ESS is a power-

ful tool for deciding whether the resampling procedure in Section 2.3.1 could provide

any benefit in terms of posterior estimates. A natural suggestion could be using the

ESS of the informative prior as a threshold for the resampling. ESS(π(θ)) >> m

means that the informative prior is wildly informative and that generating fur-

ther data from the supposed true model could neutralize its impact. Conversely,

ESS(π(θ)) ≤ m suggests that resampling should not yield any benefit, since the

prior π does not provide an extra amount of information compared to the current

sample size.

29



30 2.4. THEORETICAL RESULTS FOR THE MDD CLASS

2.4.2 Distribution-constant statistics

In this section we frame the MDD priors approach within the general theoretical

framework for the data-dependent priors proposed by Darnieder (2011) —and sum-

marized in Section 2.2— and we draw an appealing theoretical comparison between

the MDD priors and the Bayesian approach, under certain technical conditions.

As alluded in Section 2.2, one of the key-points of the Darnieder’s approach

concerns the choice of the statistic T (y) on which conditioning the prior distri-

bution. As widely explained in Section 2.3, the MDD prior depends on the data

only through the Hellinger distance, defined in 2.3.1. For illustration purposes only

and without loss of generality —the theorems listed below preserve their valid-

ity in a multidimensional case— let θ be a scalar parameter, θ ∈ R, and put

r(m)(θ, θ + △) ≡ H(f(ym|θ), f(ym|θ + △)), where the parameters’ difference △
is not a parameter, but just a known quantity which may be computed for each

m. Let Im(θ; f) = mI(θ) denote the Fisher information for the parametric family

{f(ym; θ) : θ ∈ Θ} in case of independent observations. Borovkov and Moullagaliev

(1998) state the following theorem. In what follows, let r(m)(△) denote r(m)(θ, θ+△)

for simplicity purposes.

Theorem 3. If the function
√

f(ym|θ) is differentiable with respect to θ, and Im(θ; f)

is continuous, then there exists the limit:

lim
△→0

r(m)(△)

△2
= Im(θ; f) (2.27)

This Theorem provides a limiting behaviour for the Hellinger distance in a neigh-

borhood of 0 of the parameters’ difference △. Furthermore, they also provide some

uniform bounds for r(m)(△)/△2:

Theorem 4. If

(i) the parameters set Θ is compact;

(ii) f(ym|θ) 6= f(ym|θ + △) whenever △ 6= 0. Under this condition we have

r(m)(θ, θ +△) > 0 for △ 6= 0;

(iii) 0 < I(θ) ≤ h <∞ for a given constant h.
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Then there exists a constant g > 0 such that the following relation holds:

g ≤ r(m)(△)

△2
≤ h, ∀θ ∈ Θ. (2.28)

Theorem (4) is stating that, for every choice of θ, r(m)(△) is bounded between

g△2 and h△2.

In our framework, the dependence of the MDD class to the data is represented

by the observed Hellinger distance ψm∗ . Then, a natural choice is to set T (ym∗) =

r(m
∗)(△). If Im∗(θ; f) does not depend on the parameter θ(m

∗) —this happens for

instance for the Normal, LogNormal, Cauchy and Logistic distributions— from The-

orem 3 the distribution of T (ym∗) does not depend on θ, but only on the parameters’

difference △, as △ → 0. In other words, T (ym∗) is a distribution-constant statistic

and Theorem 1 in Section 2.2.1 holds. We may summarize these results and state the

following resuming theorem.

Theorem 5. Given a parametric family of continuous distributions {f(ym∗ |θ), θ ∈
Θ} for which the Fisher information Im∗(θ; f) does not depend on θ, then the Hellinger

distance r(m
∗)(△) does not depend on θ(m

∗) as △ → 0, but only on the difference △.

This means that the statistic T (ym∗) = r(m
∗)(△) is distribution-constant and the

MDD prior (2.17) π(θ|T (ym∗)) reduces to a genuine prior π(θ).

It is straightforward to show that, in this particular case, the MDD prior still

depends on the data, but exhibits its dependence on the data only through condi-

tioning on the sample size m, plus an augmented sample size κ. And in such a

case, as Darnieder (2011) suggests, there is no need of doing any adjustment, since

the sample size m is intrinsic in the likelihood and does not convey any information

about θ.

By concluding, we found some special cases in which conditioning the prior on a

data statistic may be reduced to choosing a genuine Bayesian approach.

2.4.3 Approximation of a hierarchical model

As suggested by Gelman (2016a), data-dependent priors may sometimes be inter-

preted as an approximation of a hierarchical model, and in Section 2.2.2 we provided
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a brief formalization of this intuition. Using again the Normal-Normal model as a

toy example, let consider the following hierarchical model:

yij ∼ N (θj[i], σ
2), i = 1 . . .m, j = 1, . . . , J (2.29)

θj ∼ N (0, τ 2j ) (2.30)

τ 2j = ζ2j with probabilities ψj,

J
∑

j=1

ψj = 1, (2.31)

where the nested index j[i] codes as usual in the hierarchical models (Gelman and

Hill, 2006) the group membership for the statistical unit i; the group-level parame-

ter θj is assigned a normal prior distribution; the prior variance τ 2j may assume in

our framework J = 2 different values, τ 21 = cζ2, τ 22 = ζ2, with probabilities ψ and

1 − ψ; c, ζ2 are for simplicity fixed hyperparameters. If we fit this model according

to the Bayesian paradigm, we should also assign a prior distribution to the proba-

bility ψ, for instance ψ ∼ Be(a, b), depending on some hyperparameters a, b. The

MDD prior for θ, θ ∼ ψN (0, cζ2) + (1 − ψ)N (0, ζ2), is another way for expressing

equations (2.30), (2.31). We may then argue that the MDD class is a natural ap-

proximation of the model above, with the parameter ψ that is not assigned a prior

but estimated from the data through the procedures described in Section 2.3.1. For

illustration purposes only, Figure 2.2 displays the mean squared errors obtained from

the posterior estimates of the hierarchical model (2.29), (2.30), (2.31) above and the

MDD-res prior. We performed the computations using RStan (Stan Development

Team, 2016a), the R (R Core Team, 2016) interface to the Stan C++ library (Stan

Development Team, 2016b), with c = 100, ζ2 = 1, σ2 = 5, m = 5 and for different

values of the Beta hyperparameters a, b; the MDD prior globally shows lower MSEs

as the true value θ0 moves away from zero, the prior mean.

2.4.4 Model for the tuning parameter

As mentioned in Section 2.2.4, the relationship between the penalized likelihood ap-

proach and the Bayesian theory is related to interpreting the penalty as the kernel of

a prior log-density. However, the estimation of the penalty weight related to the prior

variance remains open. Hastie et al. (2002) suggest to use cross-validation, whereas
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a=2, b=2 a=5, b=5

a=0.5, b=0.5 a=1, b=1
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Figure 2.2: Comparison between the MSE of the hierarchical model (dashed black

line) for different values of the Beta hyperparameters a, b and of the MDD-res prior

(green line), with the weight ψm∗ estimated from data. On the x-axis the true pa-

rameter value that generated the data. c = 100, ζ2 = 1, σ2 = 5, m = 5. MSEs

computed over 200 replications. The hierarchical model has been fitted using RStan

(Stan Development Team, 2016a), the R (R Core Team, 2016) interface to the Stan

C++ library (Stan Development Team, 2016b).
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Efron (2012) propose empirical Bayes methods. Otherwise, Cole et al. (2013) set

different values and examine the results for these different inputs. The MDD prior

specification may be seen as a natural alternative for estimating the tuning parameter

in the penalized likelihood approach. For illustration purposes only, let consider the

regression model

yi = β0 +
J
∑

j=1

βjxij + ǫi,

where ǫi ∼ N (0, σ2). And consider now the penalized log-likelihood with quadratic

penalty for this model

l(β;y)− 1

2τ 2
β2, (2.32)

where βj ∼ N (0, τ 2) according to the Bayesian interpretation of the Ridge regres-

sion. The penalty weight/tuning parameter is then r = 1/τ 2, the inverse of the prior

variance. Instead of estimating directly this factor, specifying a MDD prior for βj is

an automatic tool for introducing an auxiliary level for the variance, as in (2.31):

l(β;y)− 1

2τ 2
β2, (2.33)

τ 2 =







ζ2 with ψ

cζ2 with 1− ψ.
(2.34)

Although we use the Normal-Normal model, this approach allows flexibility also

for other types of prior distributions (Wood, 2017).

The penalized methods —Lasso, Ridge regression, etc.— are designed for reducing

the mean squared errors, and the MDD class of priors represents a built-in method

for addressing the same objective. Further work should be developed in order to

implement the MDD priors for regression models and within the Bayesian variable

selection framework.

2.5 Simulation studies

In this section we provide some numerical and graphical examples which (a) introduce

and assess the frequentist coverage of the posterior credible intervals (Carlin and
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Louis, 2000) and the mean squared errors obtained from the MDD, noninformative

and informative priors and (b) clarify some theoretical results related to the notion

of effective sample size (ESS) presented in Section 2.4 . Moreover, these practical

examples contribute to understand the theory behind the MDD priors’ formulation

described in Section 2.3.

2.5.1 Mean squared errors and frequentist coverage

Given a generic prior π(θ), let π(θ|ym) be the corresponding posterior. Define am(α)

by the relationship

∫ am(α)

−∞

π(θ|ym)dθ = α.

Let Am = (−∞, am(α)], then Pr(Am|y1, . . . , ym) = α. Perhaps, let

coverageθ(Am, α) = Pr(θ ∈ Am|θ) (2.35)

be the frequentist coverage of the Bayesian interval estimate Am. According to

this definition of Wasserman (2000), we say that the prior π generates second-order

correct intervals if

∫

L(θ;ym)π(θ)dθ <∞

almost surely for all m greater than some m0 and

coverageθ(Am, α) = α +O(1/m)

for every θ, where L(θ;ym) is the likelihood.

In this section we replicated y
(b)
m ∼ f(ym|θ0), b = 1, ..., B, under different choices

for θ0 and m —see Table 2.3 for details— and we counted how many times the true

value parameter θ0 is contained in the credible intervals obtained from the posterior

distributions. In this manner we obtained the actual coverage α̂ and we compared it

to the nominal coverage α through the coverage difference

△α = |α− α̂|. (2.36)

The smaller is this quantity, the more reliable is the credible interval according to

frequentist criteria.
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The frequentist coverage is often used as a performance tool of some Bayesian pro-

cedures, and it represents a powerful tool for assessing the goodness of the posterior

estimates. However, we would need also an error measure for quantifying whether

our posteriors yield wrong results. For this aim, the empirical mean squared error

(MSE) for θ over the B samples is computed as

MSEθ = B−1

B
∑

b=1

(θ̂(b) − θ0)
2, (2.37)

where θ̂(b) is the posterior median for θ for the b-th sample.

Simulation scheme

(i) for b = 1, . . . , B:

– replicate y
(b)
m ∼ f(ym|θ0);

– derive the credible interval at level α = 0.95, A
(b)
m = (−∞, a

(b)
m (α)] for

the posterior distribution arising from y
(b)
m , π(θ|y(b)

m );

– derive the posterior median θ̂(b).

(ii) compute the actual coverage α̂ = B−1
∑B

b=1 |θ0 ∈ A
(b)
m | and then the

coverage difference (2.36).

(iii) compute the empirical mean squared error (2.37).

(NN) Figure 2.3 displays the empirical MSEs for the Normal-Normal model com-

puted for the informative posterior (black line), noninformative posterior (red

line), MDD-natural posterior (blue line), and MDD-res posterior (green line),

plotted against the true parameter value θ0 that generated the data at hand,

in correspondence of different sample sizes m and likelihood’s variances σ2. As

a general consideration, the MSEs appear to be jointly sensitive to the sam-

ple size and the likelihood’s variance: in fact, they rapidly grow for m = 5

and σ2 = 20, as the true parameter value moves away from zero (the infor-

mative/noninformative prior mean). Conversely, they are uniformly flat for

m = 25 and σ2 = 1, even when the true value parameter is far from the prior

means. This is intuitive, since a richer dataset tends to adjust the posteriors,
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Table 2.3: True value parameter which generated data; sample size; baseline and in-

formative priors for the four univariate conjugate models used in the simulation study

and ESS for the informative prior. MSEs and frequentist coverages are computed over

200 samples.

NN GP GExp BB

True θ0 0, 0.5, 1, . . . , 3 1, 1.5, . . . , 4 1, 1.5, . . . , 4 [0, 1]

m 5,10,15,25 1,2,3,4 1,2,3,4 1,2,3,4

πb(θ) N (0, 1000) Ga(0.4, 0.2) Ga(0.4, 0.2) Be(0.02, 0.18)
π(θ) N (0, 1) Ga(400, 200) Ga(400, 200) Be(20, 180)
Eb(θ) = E(θ) 0 2 2 0.1

ESS(π(θ)) 1, 5, 10, 15 399.6/ȳ 399.6 200

which appear then to be less distinguished. In terms of performance, the MDD-

natural and the MDD-res register similar MSEs: in this case, resampling does

not seem to be beneficial. We may derive similar conclusions from the frequen-

tist coverage displayed in Figure 2.4, where the credible intervals provided by

the informative posterior fail in covering the true parameter value as this moves

away from zero, whereas the MDD-natural behaves better than the MDD-res

and often approximates the noninformative posterior.

(GExp) In Figure 2.5 the MSEs for the Gamma-Exponential model for the infor-

mative, MDD-natural and MDD-res posteriors behave quite analogously: they

decrease in correspondence of the prior mean α/β = 2, and they rapidly grow

as the true parameter moves away from this value. Conversely, the MSEs reg-

istered by the noninformative posterior tend to be generally higher than those

registered by the other posteriors. Here, the chosen sample sizes are really

small. One could be tempted to conclude that also in this case the resampling

does not provide any benefit. But the frequentist coverage plotted in Figure 2.6

suggests something different. Here, the noninformative posterior registers the

lowest coverages’ differences for each sample size, but the behavior of the MDD-

res is different from the MDD-natural. The latter seems to strictly follow the

informative posterior, which yields a good coverage difference only in corre-

spondence of the prior mean, but is extremely high elsewhere. Whereas the

MDD-res yields lower values and appear to be closer to the noninformative
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Figure 2.3: Normal-Normal model: ym ∼ N (θ0, σ
2), πb(θ) = N (0, 1000), π(θ) =

N (0, 1). True value parameter θ0 (x-axis) and MSEs obtained from π, πb, MDD-

natural ϕ, MDD-res ϕ in correspondence of σ2 = (1, 5, 10, 15).
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Figure 2.4: Normal-Normal model: ym ∼ N (θ0, σ
2), πb(θ) = N (0, 1000), π(θ) =

N (0, 1). True value parameter θ0 (x-axis) and coverage difference obtained from π,

πb, MDD-natural ϕ, and MDD-res ϕ in correspondence of σ2 = (1, 5, 10, 15). (Values

exceeding 0.5 are removed from the plot).
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Figure 2.5: Gamma-Exponential model: ym ∼ Exp(θ), πb(θ) = Ga(0.4, 0.2), π(θ) =
Ga(400, 200). True value parameter θ0 (x-axis) and MSE obtained from π, πb, MDD-

natural ϕ, MDD-res ϕ.

posterior.

(GP) The considerations made for the Gamma-Exponential model are almost iden-

tical for the Poisson-Gamma model, whose MSEs and frequentist coverages are

displayed in Figure 2.7 and Figure 2.8, respectively.

(BB) The performances of the MSEs for the Beta-Binomial model in Figure 2.9

show a different trend if compared with the MSEs of the previous models. The

MDD-natural tends to overlap the informative posterior for each sample size,

whereas the beneficial of the resampling appears evident in the trend for the

MDD-res, which approximates the noninformative posterior and sometimes is

even preferable. Also the coverage differences displayed in Figure 2.10 highlight
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Figure 2.6: Gamma-Exponential model: ym ∼ Exp(θ), πb(θ) = Ga(0.4, 0.2), π(θ) =
Ga(400, 200). True value parameter θ0 (x-axis) and coverage difference obtained from

π, πb, MDD-natural ϕ, MDD-res ϕ.

41



42 2.5. SIMULATION STUDIES

(C) m= 3 (D) m= 4

(A) m= 1 (B) m= 2

1 2 3 4 1 2 3 4

0

1

2

3

4

0

1

2

3

4

True value parameter

M
S

E

model

Inform.

MDD−res

MDD natural

Noninform.

Figure 2.7: Gamma-Poisson model: ym ∼ Pois(θ), πb(θ) = Ga(0.4, 0.2), π(θ) =

Ga(400, 200). True value parameter θ0 (x-axis) and MSE obtained from π, πb, MDD-

natural ϕ, MDD-res ϕ.
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Figure 2.8: Gamma-Poisson model: ym ∼ Pois(θ), πb(θ) = Ga(0.4, 0.2), π(θ) =

Ga(400, 200). True value parameter θ0 (x-axis) and coverage difference obtained from

π, πb, MDD-natural ϕ, MDD-res ϕ.
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a global improvement for the MDD-res, which often registers the lowest values.

As a general comment of these simulation studies, we may argue that, apart for

the Normal-Normal model, the MDD-res is well suited for reducing the MSEs and

the coverage differences in correspondence of small sample sizes. In fact, by taking a

joint look at these two quantities for each of the three other models, it clearly appears

that the MDD-res, along with the informative and the MDD-natural, overcomes the

noninformative prior in terms of MSEs, at least in a region of the true parameter

value close enough to the informative/nonnformative prior mean; at the same time,

his performance in terms of frequentist coverage tends to be much better than those

provided by the informative and by the MDD-natural.

An empirical justification of these results is provided by the effective sample sizes

provided by the different models. In the Normal-Normal model the effective sample

size amounts to σ2/τ 2 = 1, 5, 10, 15 according to the different input values for the

variances. The comparison with the input sample sizes m = 5, 10, 15, 25 highlights

the usefulness of the resampling: the current sample size is in fact already able to

absorb and neutralize the impact of the informative prior. The informative effective

sample sizes for the Gamma-Exponential, Gamma-Poisson and Beta-Binomial model

amount respectively to α−α/c = 399.6, (α−α/c)/ȳ and α+ β = 200. Compared to

the current sample sizes m = 1, 2, 3, 4, they are sensitively huge: here the resampling

is beneficial for neutralizing the impact of a wildly informative prior distribution, and

the MDD-res is preferable to the MDD-natural but, more generally, overcomes in our

opinion the noninformative choice as well.

2.5.2 Effective sample size

In this simulation framework, let θ ∈ R denote the generic parameter of interest, and

πb(θ), π(θ) the baseline and the informative priors. The MDD prior is

ϕ(θ) = ψm∗πb(θ) + (1− ψm∗)π(θ),

with mixture weight ψm∗ . For illustration purposes only, the mixture weights

in this section are fixed in advance and no procedure —natural or resampling— is

applied in this case for specifying them. We may compute the distance (2.25) between

the MDD prior ϕ(θ) and the baseline posterior qm(θ|ym) evaluated in θ̄ = Eπ(θ). The
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Figure 2.9: Beta-Binomial model: ym ∼ Bin(m, θ), πb(θ) = Be(0.02, 0.18), π(θ) =

Be(20, 180). True value parameter θ0 (x-axis) and MSE obtained from π, πb, MDD-

natural ϕ, MDD-res ϕ.
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Figure 2.10: Beta-Binomial model: ym ∼ Bin(m, θ), πb(θ) = Be(0.02, 0.18), π(θ) =
Be(20, 180). True value parameter θ0 (x-axis) and coverage difference obtained from

π, πb, MDD-natural ϕ, MDD-res ϕ.
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negative second derivative of the MDD log-density Dϕ has not in general a closed

form and it is computed through an R routine. We simulate m = 5 initial data from

f(ym|θ0) = N (θ0, σ
2), with the true mean θ0 = 0 and variance σ2 = 15. We choose

πb(θ) = N (0, c), π(θ) = N (0, 1): according to the technical conditions in (2.21), both

the priors πb, π are centered at the same mean, here µ = 0, with informative variance

equals 1 and baseline prior variance set to c.

From Section 2.4 we know that the ESS carried by the MDD prior class is always

lower than the ESS for the informative prior. Now it is of interest for us assessing how

much less information is provided by the MDD prior in correspondence of specific

values of the mixture weights and of the hyperparameter c. Figure 2.11 shows the

effective sample sizes for the informative, noninformative and the MDD prior with

different mixture weights against the hyperparameter c, which inflates the informative

variance. As a first consideration, this plot is a confirm of Theorem 2: the effective

sample size for the MDD prior ϕ is never greater than the effective sample size for

π. ESS(π(θ)) = σ2/τ 2 = 15/1 = 15, while the effective sample size for the baseline

prior clearly depends on the value of c, being σ2/c. As is intuitive, the MDD class is

sensitive to the choice of ψm∗ and c . As the mixture weight increases and the baseline

prior is then favored, the information of the MDD prior decreases. Less intuitive is

the behavior of the MDD class in function of the hyperparameter c. Each of the

MDD in the plot is stepwise increasing with c and this deserves a quick technical

consideration. By definition (2.25), we are using the second derivatives of the log-

densities, which means differentiate twice the function log(ϕ(θ)) = log(ψm∗πb(θ)+(1−
ψm∗)π(θ)): the greater is c, the flatter becomes πb, and consequently the smaller is the

contribute in terms of mass probability carried by the baseline prior. Furthermore,

the logarithm contributes to shrink the values of ϕ. Hence, the curvature of log(ϕ(θ))

will approximate the curvature of log(π(θ)) as c increases, and the information carried

by the MDD and the informative prior will tend to be closer. This counterintuitive

fact may be read in two directions: we could need another notion of distance, possibly

less sensitive to the values of the hyperparameter c —taking, for instance, the second

derivatives of the densities instead of the second derivative of the log densities— or

we could use another kind of baseline prior, which does not depend on c (improper

prior, Jeffreys prior,...). We address this second issue in the next section.

47



48 2.5. SIMULATION STUDIES

0

5

10

15

0 250 500 750 1000

c

E
S

S

model

Informative

MDD (0.2)

MDD (0.4)

MDD (0.6)

MDD (0.8)

Noninformative

Figure 2.11: Normal-Normal model: ym ∼ N (θ0, 15), πb(θ) = N (0, c), π(θ) =

N (0, 1). Effective sample sizes plotted against the hyperparameter c. ESS(π(θ)) =

15.
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2.6 Examples to Some Nonstandard Models

In the previous sections we dealt with two priors π and πb belonging to the same

family, under the technical condition (2.21). This is a common choice, adopted for

instance in Morita et al. (2008), that allows for simply raising the noninformative

variance by a factor c and falling into the conjugate models. However, one may

be interested in exploring other prior choices for πb, possibly automatic priors, and

attempt to measure the information carried by the MDD prior (2.17), by taking

unchanged the informative prior π. Or one may be interested in exploring non-

conjugate models, setting an MCMC sampler. In this section we explore the first

possibility and we focus on the corresponding amount of priors’ information through

a toy example and through a real case from a phase I trial study. But it is of future

interest explore the non-conjugate models as well.

2.6.1 Jeffreys prior for an exponential model

Let ym = (y1, ..., ym) ∼
iid

Exp(θ), with π(θ) = Ga(α, β). The likelihood is then

Lm(θ;ym) =
m
∏

i=1

f(yi) = θm exp(−θ
m
∑

i=1

yi). (2.38)

We introduce the Fisher information for the exponential model computed for a

single observation:

Iθ = E

[

−d
2 log f(y; θ)

dθ2

]

=

= −E
[

d2

dθ2
[log(θ)− θy]

]

= −E
[

d

dθ
[1/θ − y]

]

= E

[

1

θ2

]

=
1

θ2
.

Let πb(θ) = j(θ), where j(θ) =
√
Iθ is the Jeffreys prior. For the exponential

model, the Jeffreys prior for θ is

j(θ) =
√

Iθ = 1/θ. (2.39)

Now we compute the Jeffreys posterior qm(θ|y1, ..., ym) = jm(θ|y1, ..., ym):

jm(θ|ym) ∝ j(θ)Lm(θ;ym) = θ−1

m
∏

i=1

θ exp{−θyi} = θm−1 exp{−θ
m
∑

i=1

yi}. (2.40)
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We immediately realize that this is the kernel of a Gamma distribution, Ga(m,∑i yi):

jm(θ|ym) =
(
∑

i yi)
m

Γ(m)
θm−1 exp{−θ

m
∑

i=1

yi}.

We compute the negative second log derivative of jm(θ|ym) and we find the familiar

result for a Gamma distribution

Djm = − d2

dθ2
[jm(θ|ym)] =

m− 1

θ2
. (2.41)

We code with the symbol ϕj(θ) the MDD prior built using the Jeffreys prior as

baseline; the informative prior is set to π(θ) = Ga(4, 1). Finally, by using the plug-in

estimate θ̄ = α/β, we may compute:

• the distance (2.23) between the informative prior π and the Jeffreys posterior

jm, with a corresponding sample size ESS(π(θ)) = α = 4;

• the distance (2.23) between the informative prior π and the baseline Gamma

posterior qm, resulting from the baseline prior Ga(α/c, β/c), with a correspond-

ing sample size ESS(π(θ)) = α− α/c;

• the distance between the Jeffreys prior j and the Jeffreys posterior jm;

• the distance (2.25) between the MDD prior ϕj and the Jeffreys posterior jm.

Figure 2.12 shows the effective sample sizes associated to the list above, plotted

against the hyperparameter c; the mixture weights in the MDD class are fixed in

advance for a sensitivity analysis. ESS(ϕj(θ)) is always bounded between the ef-

fective sample sizes respectively for j and π, and results to be obviously constant

for each value of the hyperparameter c. As is intuitive, as the mixture weight in-

creases, ESS(ϕj(θ)) gets closer to ESS(j(θ)), the effective sample size for the base-

line Jeffreys prior. Whereas, analogously to what happened in Section 2.5.2 for the

Normal-Normal model, the MDD prior ϕ(θ) is increasing with c. In some sense,

as already mentioned, we would like to observe the inverse relation: the vaguer the

baseline, the lower should be the information of the MDD prior. We have already

observed and discussed this issue in Section 2.5.2: we may now conclude that the use

of automatic/improper priors —when this use is possible— in the MDD formulation

keeps the baseline information constant and avoids an information growth depending
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Figure 2.12: Gamma-Exponential model: ym ∼ Exp(θ), j(θ) = θ−1, π(θ) = Ga(4, 1),
πb(θ) = Ga(α/c, β/c). Effective sample sizes plotted against the hyperparameter c.

ESS(π(θ)) = α = 4.

on a further inflating hyperparameter c. Probably, using a baseline depending on a

factor c results in a partially noninformative prior, rather than eliciting a Jeffreys

—or another improper— prior. We obtain a further confirm of this idea in the next

subsection: improper priors in the MDD formulation yield lower values for the global

amount of information.

2.6.2 Logistic regression for phase I trial

Thall and Lee (2003) proposed a logistic regression to determine the greatest amount

of tolerable dose in a phase I trial. In this section we follow the approach of Morita

et al. (2008), who used the same example for studying the properties of the effective
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52 2.6. EXAMPLES TO SOME NONSTANDARD MODELS

sample size for different values of the hyperparameters.

The level of dose which each patient may receive is one among 100, 200, 300, 400,

500, 600 mg/m2, denoted by x1, . . . , x6. These values are then standardized on the

log scale and denoted with X1, ..., X6. The response variable is yi = 1 if patient i

suffers toxicity, yi = 0 if not. They assume the following logistic model:

P (yi = 1) ≡ π(Xi,θ) = logit−1(µ+ βXi), i = 1, ...,m, (2.42)

where logit−1(x) = ex/(1 + ex). Unlike for the conjugate models considered in

Section 2.4.1, here the dimension of the parameters’ space is d = 2, θ = (µ, β), where

µ is the intercept of the linear predictor and β is the coefficient associated to the

different levels of the doses. In order to compute the effective sample size, we need

the extension to the multivariate case outlined by Morita et al. (2008). The likelihood

for a sample of m patients ym = (y1, ..., ym) is

f(ym|X,θ) =
m
∏

i=1

π(Xi,θ)
yi(1− π(Xi,θ))

1−yi . (2.43)

Thall and Lee (2003) elicited two independent informative priors for µ and β based

on preliminary sensitivity analysis:

µ ∼ π(µ) = N (µ̃µ, σ̃
2
µ) = N (−0.11313, 22)

β ∼ π(β) = N (µ̃β, σ̃
2
β) = N (2.3980, 22).

(2.44)

Hence, the baseline joint prior for θ is π(θ) = N (µ̃µ, cσ̃
2
µ)N (µ̃β, cσ̃

2
β), where the

hyperparameter c is fixed at 10000. We follow the steps of the algorithm formulated

by Morita et al. (2008) for determining (i) the effective sample size of each subvector

and (ii) the global effective sample size of the parameter vector θ as those values

which respectively minimize the distances δ1(mµ, θ̄, πµ, qmµ
), δ2(mβ, θ̄, πβ, qmβ

) and

δ(m, θ̄, π, qm), by using the plug-in vector θ̄ = (µ̃µ, µ̃β). See the Appendix A for a

deep illustration of the algorithm. In this way, we compute the effective sample size

of each parameter’s subvector and then the global effective sample size of the logistic

model. Given the two priors πµ, πβ in (2.44), we will denote the first two quantities

with ESS(π(µ)), ESS(π(β)), and the third one simply with ESS(π(θ)). Table 2.4

reports these effective sample sizes, obtained replicating the experiment of Morita

et al. (2008) and evaluated with respect to different values of the priors variances
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σ2
µ, σ

2
β. As intuitive, the information contained in the prior distributions decreases

as the variances increase. In any case, the parameter β, associated to the effect of

the doses, yields a greater knowledge than the parameter µ, which represents the

average response. We repeat the same steps above, but eliciting two MDD priors for

the vector parameter θ:

µ ∼ ϕ(µ) = ψN (µ̃µ, cσ̃
2
µ) + (1− ψ)N (µ̃µ, σ̃

2
µ)

β ∼ ϕ(β) = ψN (β̃β, cσ̃
2
β) + (1− ψ)N (µ̃β, σ̃

2
β),

(2.45)

where the hyperparameter c is fixed at 10000 as before and ψ is the mixture weight.

Being in absence of actual data at hand, here we do not assume a MDD-natural or a

MDD-res obtained through the procedures described in Section 2.3.1. We limit our

attention to the global information of the mixture formulation for generic values of the

mixture weights, fixed in advance. Thus, for illustration purposes only, we drop the

subscript m∗ and we consider three different values for ψ, ψ = {0.2, 0.5, 0.8}. Then,

we compare the so obtained results with those obtained with the above mentioned

prior distributions. As may be noticed from Table 2.5, as ψ increases the effective

sample sizes for the MDD priors (2.45) slightly decrease, as expected. However, the

values obtained under these mixture priors are quite close to those obtained under

the above priors π(µ), π(β) originally chosen by Thall and Lee (2003). It would be

worth assessing how much varies the information of the mixture priors ϕ by choosing

other baseline priors instead of flat normal distributions. Let us consider now two

improper priors, πb(µ) ∝ 1, πb(β) ∝ 1. The resulting MDD priors ϕj(µ), ϕj(β) are

then defined as

µ ∼ ϕj(µ) = ψ + (1− ψ)N (µ̃µ, σ̃
2
µ)

β ∼ ϕj(β) = ψ + (1− ψ)N (µ̃β, σ̃
2
β).

(2.46)

Table 2.6 reports the effective sample sizes for the priors in (2.46). In this case,

there is an evident decrease of the information associated to the MDD priors ϕ: as ψ

increases and the improper priors are then preferred, the effective sample size rapidly

decreases. This is intuitive, since the improper priors which appear in (2.46) provide

less information than the two flat normal priors in (2.45).

The example suggests that even inflating the informative variances by a great

factor c does not affect in a sensible way the amount of information contained in the
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Table 2.4: Effective sample sizes ESS(π(θ)), ESS(π(µ)), ESS(π(β)) for the tolerable

dose in a phase I trial.

π(θ) π(µ) π(β)

σ2
µ = σ2

β = 0.52 37.00 22.73 98.11

σ2
µ = σ2

β = 12 10.00 5.75 25.56

σ2
µ = σ2

β = 22 3.00 1.37 6.53

σ2
µ = σ2

β = 32 2.00 1.03 3.06

σ2
µ = σ2

β = 52 1.00 1.00 1.38

Table 2.5: Effective sample sizes ESS(ϕ(θ)), ESS(ϕ(µ)), ESS(ϕ(β)) for the MDD priors

ϕ(µ) = ψN (µ̃µ, cσ̃
2
µ)+(1−ψ)N (µ̃µ, σ̃

2
µ), ϕ(β) = ψN (µ̃β , cσ̃

2
β)+(1−ψ)N (µ̃β , σ̃

2
β) according

to different values of the mixture weight ψ, c = 10000.

ψ = 0.2 ψ = 0.5 ψ = 0.8

ϕ(θ) ϕ(µ) ϕ(β) ϕ(θ) ϕ(µ) ϕ(β) ϕ(θ) ϕ(µ) ϕ(β)

σ2

µ = σ2

β = 0.52 37.00 22.70 98.06 37.00 22.62 97.90 37.00 22.30 97.18

σ2

µ = σ2

β = 12 10.00 5.73 25.50 10.00 5.69 25.31 9.00 5.52 24.58

σ2

µ = σ2

β = 22 3.00 1.37 6.49 3.00 1.37 6.42 3.00 1.31 6.06

σ2

µ = σ2

β = 32 2.00 1.03 3.03 2.00 1.03 3.01 2.00 1.03 2.68

σ2

µ = σ2

β = 52 1.00 1.00 1.38 1.00 1.00 1.37 1.00 1.00 1.26

Table 2.6: Effective sample sizes ESS(ϕj(θ)), ESS(ϕj(µ)), ESS(ϕj(β)) for the MDD

priors ϕj(µ) = ψ + (1 − ψ)πµ, ϕ
j(β) = ψ + (1 − ψ)πβ according to different values of the

mixture weight ψ.

ψ = 0.2 ψ = 0.5 ψ = 0.8

ϕj(θ) ϕj(µ) ϕj(β) ϕj(θ) ϕj(µ) ϕj(β) ϕj(θ) ϕj(µ) ϕj(β)

σ2

µ = σ2

β = 0.52 32.00 19.71 87.65 23.00 14.03 62.43 11.00 6.55 29.06

σ2

µ = σ2

β = 12 6.00 3.58 15.78 3.00 1.68 7.42 1.00 1.03 2.48

σ2

µ = σ2

β = 22 1.00 1.00 1.99 1.00 1.00 1.14 1.00 1.00 1.03

σ2

µ = σ2

β = 32 1.00 1.00 1.10 1.00 1.00 1.03 1.00 1.00 1.03

σ2

µ = σ2

β = 32 1.00 1.00 1.03 1.00 1.00 1.03 1.00 1.00 1.03
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mixture prior. We may conclude that the best way for reducing an extra amount of

information is combining an informative prior with an improper or —when possible—

with a Jeffreys prior, as suggested in Section 2.6.1 as well.

2.7 Discussion and further work

In this chapter a new class of data-dependent prior distributions is proposed. This

class consists of a two-component mixture of a baseline (flat) prior πb and an informa-

tive prior π, weighted through a discrepancy measure between the informative prior

and the data generating model: πb is favored if π appears to be far from the data at

hand (natural procedure) or from an augmented sample size (resampling procedure).

This mixture formulation is a good proposal in terms of robustness and is designed for

avoiding prior-data conflict in presence of small sample sizes. First evidences from

simulation studies suggest also good performances for reducing the mean squared

errors and for improving the frequentist coverage.

The notion of effective sample size and, more generally, the amount of information

provided by a prior distribution are central in our work. We proved that the MDD

prior always provides a lower information than an informative prior within conju-

gate models. Furthermore, we suggest using the effective sample size as an effective

threshold for choosing between one among the two described procedures for the MDD

class.

Furthermore, different solutions for eliciting the baseline prior πb are explored:

flat prior belonging to the same family of π, Jeffreys prior, improper prior. As is

just partially intuitive, different strategies for the noninformative prior yield different

extents of information for the MDD prior.

Further work should be done in many directions. We should in fact explore more

complex models, whose a brief sketch is only outlined in this chapter. Performing

a proper sensitivity test for the selected priors πb, π is also a task of future interest.

Finally, we strongly believe that extending the proposed methodology for regression

models in terms of Bayesian variable selection is one crucial point in future research.
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Chapter 3

Hierarchical Bayesian models for

individual performance in soccer

3.1 Introduction

Compared to the volumes statisticians (professional and amateur) have written about

baseball, and to the growing statistical literature on sports like basketball and Amer-

ican football, there has been relatively little published by statisticians about soccer.

A few highlights from the limited statistical literature include: Baio and Blangiardo

(2010), who use a Bayesian hierarchical model to predict the outcome of individual

matches throughout a season in the top Italian league, Serie A; Karlis and Ntzoufras

(2000), in which the authors take a frequentist approach to estimating parameters

related to the number of goals scored by specific teams; Dixon and Coles (1997), who

use a familiar Poisson model for the number of goals between two teams and also

consider suitable betting strategies based on their model; and Karlis and Ntzoufras

(2009), which is a Bayesian model for the goal differential between two teams using

a Skellam (Poisson difference) distribution.

In most of the published statistical research on soccer, including the papers men-

tioned above, the authors do not focus on modeling the performance of individual

players over the course of a season but rather on some aspect of the global result of a

match between opposing teams (e.g., goal differential), or on predicting the order of

the league table at the end of a season. Relative to sports like baseball (Albert, 1992)

or American football (Becker and Sun, 2016), the performance of individual soccer

players is noisy and hard to predict. The dimensions of the soccer field combined
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with the number of players, the difficulty of controlling the ball without the use of

hands, and many other factors all contribute to the predictive challenge.

More primitive than the question of how to model player performance is how to

measure it. Although there is no consensus on how to quantify individual perfor-

mance in any sport, there has been less development in this area for soccer than

for other major sports. And only after measurement is defined does modeling make

sense. The oldest procedure for measuring the individual performance in the so

called goal-based team sports —hockey, soccer and basketball, among others— is the

so called plus/minus approach (see Thomas et al. (2013) for some references and

recent improvements). This method tracks the number of goals scored, both for and

against, for each player on the ice (hockey) or on the field (soccer); in such a way, the

more/less goals are scored/conceded when a player is on the ice/field, the better is

rated that player. But measuring the individual abilities of some players who share

the ice/field for much of their time may be hard. Moreover, the rarity of the goals is

often another problematic issue.

Although we are interested in modeling the overall performance of individual play-

ers, we are not yet convinced that there is an available holistic measure of individual

performance worth modeling. In fact, even as the amount and variety of publicly avail-

able soccer data grows —particularly data at the individual player/match level— the

interpretability and predictive relevance of that data will remain a question. How-

ever, we do suspect that the fantasy soccer framework (Bonomo et al., 2014; Lomax,

2006) may provide a valid measure of individual performance: in such a way, a pre-

diction task for individual performance/ratings could be well posed and also serve

as an example of a possible approach to use in the future when better measures of

individual performance in soccer matches become available. The outcome of interest

is the fantasy rating of each player in Italy’s top league, Serie A, for each match of

the 2015–2016 season. We strongly believe that these fantasy ratings may be seen as

a proxy for the quality of a player’s performance; in fact, they combine a subjective

evaluation with an objective factor accounting for specific in-game events. Moreover,

given the popularity of such fantasy games, these ratings are themselves an inter-

esting variable to model. In this chapter we present and critique several Bayesian

hierarchical models (Gelman et al., 2013; Gelman and Hill, 2006) designed to predict

the results of the Italian fantasy game Fantacalcio. We use RStan (Stan Development

Team, 2016a), the R (R Core Team, 2016) interface to the Stan C++ library (Stan
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Development Team, 2016b), to sample from the posterior distributions via Markov

chain Monte Carlo. As far as we can tell from reviewing the literature, there have

been no published attempts to use a hierarchical Bayesian framework to address the

challenges of modeling this kind of data.

Our central goals are to explore what can be accomplished with a very simple

dataset comprising only a few variables (that are freely and easily available), and

to focus on a small number of interesting modeling and prediction questions that

arise (for instance, those due to the missingness of certain values). For this reason

we also gloss over many issues that we believe should be of interest in subsequent

research, for instance variable selection, additional temporal correlation structures,

and the possibility of constructing more informative prior distributions. Although we

restrict our focus to Fantacalcio, the process of developing these models and compar-

ing them on predictive performance does not entirely depend on the idiosyncrasies of

this particular fantasy system and is applicable more broadly.

The rest of the chapter is structured as follows. In Section 3.2 we briefly intro-

duce the Italian fantasy soccer game Fantacalcio. We then describe our dataset in

Section 4.4. The models we fit to the data are presented in Section 3.4 with results

in Section 3.5. In Section 3.6 we carry out a variety of posterior predictive checks as

well as out-of-sample prediction tasks. Section 4.6 concludes.

3.2 Overview of the game

Fantasy sports games typically involve roster selection and match-by-match chal-

lenges against other participants with the results determined by the collective per-

formance of the players on the fantasy rosters. In Italy, fantasy soccer was pop-

ularized by the brand Fantacalcio edited by Riccardo Albini in the 1990s (http:

//www.fantacalcio.it). At the beginning of the season, Fantacalcio managers are

allocated a limited amount of virtual money with which to buy the players that will

comprise their roster. We will refer to the athletes, the soccer players, as players,

and use manager for the Fantacalcio participants. Each player in the Italian Se-

rie A league has an associated price determined by various factors including past

performance and forecasts for the upcoming season.

After every match in Serie A, the prominent Italian sports periodicals assign each

player a rating, a so-called raw score, on a scale from one to ten. In practice there
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Table 3.1: Bonus/Malus points in Fantacalcio. The events marked with a * symbol

are only applicable to goalkeepers.

Event Points

Goal +3

Assist +1

Penality saved* +3

Yellow card −0.5

Red Card −1

Goal conceded* −1

Own Goal −2

Missed penality −3

is not much variability in these scores; they typically range from four to eight, with

the majority between five and seven. These raw scores are very general and largely

subjective performance ratings that do not account for significant individual events

(goals, assists, yellow and red cards, etc.) in a consistent way.

As a means of systematically including specific in-game events in the ratings,

Fantacalcio provides the so-called point scoring system. Points are added or deducted

from a player’s initial raw score for specific positive or negative events during the

match. The point scores are more variable than the raw scores, especially across

positions (e.g., when comparing defending and attacking players). Goalkeepers suffer

the most from the point scoring system, as they are deducted a point for every goal

conceded. On the other extreme, forwards (attacking players) typically receive the

highest point scores because every goal scored is worth three points.

For player i in match t the total rating yit is

yit = Rit + Pit, (3.1)

where R is the raw score and P is the point score. Table 3.1 lists the game features

that contribute to a player’s point score Pit for a given match. It is worth noting

that negative ratings are also possible, although not very common. For instance, a

goalkeeper with a raw score of three who also allows four goals would have a rating

yit = −1.

Since it is very rare for a player to participate in all matches, some yit are missing,
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and this may be due to different reasons. First, player i’s rating for match t will be

missing if the player does not play in the match because of injury, disqualification,

coach’s decision, or some other reason. In addition, this can occur when a player

does not participate in the match for long enough for their impact to be judged by

those tasked with assigning the subjective raw score (Rit = 0) or for the player to

accumulate or lose any objective points (Pit = 0).

Modeling the missingness is one of the main concerns of this chapter. We return

to this issue later in Sections 3.4.2 (mixture models) and 3.4.3 (missing data models)

when we confront the challenge it poses for our modeling and prediction tasks and

consider methods for modeling the missingness that naturally arises in our dataset.

3.3 Data

All data for this chapter are from the 2015–2016 season of the Italian Serie A and

were collected from the Italian publication La Gazzetta dello Sport (http://www.

gazzetta.it). We use all of the ratings for every player satisfying the following two

criteria:

• The player participated in at least a third of matches during the andata (the

first half of the season). This amounts to dropping players who played in fewer

than seven matches in the first half.

• The player participated in the final match of the andata.

This results in a dataset containing ratings for 237 players (18 goalkeepers, 90 defend-

ers, 78 midfielders, and 51 forwards). Figure 3.1 displays the distributions of average

ratings by position, while Figure 3.2 shows the bivariate relationship between average

rating and the initial standardized price for each player.

Although the full season comprises 38 matches for each team, as alluded to in

Section 3.2 rarely does a player participate in all matches. For the 237 players in

our data that meet the two criteria above, the mean number of matches played is

27.5 with a standard deviation of about 7, and 75% of these players missed at least

5 matches.

Note that the professional European soccer leagues may allow for a players’ transfer

market occurring approximately at the midpoint of the season. According to this
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Figure 3.1: The distributions of average ratings by position.

Figure 3.2: The distributions of average ratings versus initial standardized price.
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opportunity, some players may move to a new team belonging either to the Italian

Serie A or to another league. Although the transfer market could be appealing in

terms of players’ performances and also in terms of Fantacalcio ratings, only a few

players of the current dataset changed team; thus, we do not need to include this issue

in the model and we assign to each player the membership team at the beginning of

the season.

Notation for observed data

There are N = 237 players and T = 38 matches in the dataset. When fitting our

models we use only the T1 = 19 matches from the first half of the 2015–2016 Serie

A season. The remaining T2 = 19 matches are used later for predictive checks.

For match t ∈ {1, . . . , T}, let yijkt denote the value of the total rating for player

i ∈ {1, . . . , N}, with position (role on the team) j ∈ {1, . . . , J}, on a team in team-

cluster k ∈ {1, . . . , K}. To ease the notational burden, throughout the rest of the

chapter the subscripts j and k will often be implicit and we will use yit in place of

yijkt.

The players are grouped into J = 4 positions (forward, midfielder, defender, goal-

keeper) and K = 5 team clusters. The five clusters (Table 3.2) were determined

using the official Serie A rankings at the midpoint of the season. The purpose of the

team clustering is both to use a grouping structure that has some practical meaning

in this context and also to reduce the computational burden somewhat by including

cluster-specific parameters rather than team-specific parameters. We experimented

with team specific parameters but found that it leads to models that are slower to fit

but that yield similar inferences.

There are only two other variables in our limited dataset. We let hit = 1 if player

i’s team plays match t at its home stadium and hit = 0 if the match is played at

the opponent’s stadium. And we use qi to denote the initial standardized price for

player i. These values are assigned by experts and journalists at the beginning of the

season based on their personal judgement and then updated throughout the season

to reflect each player’s performance (http://www.gazzetta.it/calcio/fantanews/

statistiche/serie-a-2015-16/).
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Table 3.2: The K = 5 team clusters, from weakest to strongest. Group 5 is headlined

by Juventus, the top performing team in Serie A for the past several seasons.

Cluster Teams

1 Palermo, Frosinone, Carpi, Verona

2 Genoa, Sampdoria, Empoli, Udinese

3 Bologna, Chievo, Atalanta, Torino

4 Milan, Fiorentina, Lazio, Sassuolo

5 Juventus, Roma, Inter, Napoli

3.4 Models

Notation for model parameters

The notation we use for model parameters is similar to the convention adopted by

Gelman and Hill (2006) for multilevel models. According to this, the index variables

j[i], k[i] code group membership. For instance, if j[1] = 4, then the first unit in the

data (i = 1) belongs to position group 4. If k[1] = 3, then the first unit belongs to

team-cluster 3.

We use αi for individual random effects corresponding to each player i = 1, ..., N .

The parameters γk and βk,t represent, respectively, the team-cluster effect and the

team-cluster effect of the team opposing in match t, with k = 1, ..., K. As already

mentioned, in our simplified framework we set the number of team-clusters K = 5.

We denote by ρj the position-specific parameters, with j = 1, ..., J and J = 4. The

standardized prices are multiplied by a slope δj, which is allowed to vary across the

J positions. Because we are interested in detecting trends in player ratings, we also

incorporate the average rating up to the game t − 1, ȳi,t−1, which is multiplied by

a factor λj[i] estimated from the data. For the mixture model in Section 3.4.2, the

same average rating ȳi,t−1 is also multiplied by a coefficient ζj[i] in order to model the

probability of participating in the match t. We anticipate that in their posteriors λ

and ζ (here denoted as vectors) will be meaningfully different from zero. Since we

work in a Bayesian framework, all parameters will be assigned prior distributions,

which in turn may depend on hyperparameters that are either fixed or themselves

estimated from the data.
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3.4.1 Hierarchical autoregressive model (HAr)

As above, let yit (with indices j and k implied) denote the total rating (3.1) for player

i in match t. For our first model, we code all the missing ratings y as zeros. This

makes sense if we are (and, in part, we are) interested in the annual cumulative rating

of a given player, or of a given subset of players (this is investigated graphically later

in Section 3.6). Or, for instance, experts and scouts may be interested in estimating

the number of goals that will be scored by Roma’s forwards. Since the number of

goals heavily depends on the number of games played, it makes sense to assign a

value of zero for any missed matches (unobserved player ratings) as they should not

contribute to the total number of goals scored. Later, in Section 3.4.3, we will take a

different approach in which missing values are actually treated as unobserved and we

specify a full joint probability model for both the observed and unobserved ratings.

We begin with a standard hierarchical autoregressive model

yit ∼ Normal (ηit, σy) , (3.2)

where ηit is the linear predictor

ηit = α0 + αi + βk[i],t + γk[i] + ρj[i] + δj[i]qi + λj[i]ȳi,t−1 + θhit, (3.3)

α0 is the intercept, and σy is the standard deviation of the error in predicting the

outcome. Note that the term autoregressive is used here for indicating the inclusion

of the average rating up to the game t − 1 in the model. As we are fitting our

models using Stan (Stan Development Team, 2016b), we follow its convention of

parameterizing normal distributions in terms of standard deviation rather than the

precision or variance.

The individual-level, position-level, and team-cluster-level parameters are given

hierarchical normal priors,

αi ∼ Normal(0, σα), i = 1, . . . , N

γk ∼ Normal(0, σγ), k = 1, . . . , K

βk ∼ Normal(0, σβ), k = 1, . . . , K

ρj ∼ Normal(0, σρ), j = 1, . . . , J

(3.4)

with weakly informative prior distributions for the remaining parameters and hyper-
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parameters,

α0 ∼ Normal(0, 5)

θ ∼ Normal(0, 5)

δj
iid∼ Normal(0, 5), j = 1, . . . , J

λj
iid∼ Normal(0, 1), j = 1, . . . , J

(σθ, σα, σγ, σβ, σρ)
iid∼ Normal+(0, 2.5),

σy ∼ Cauchy+(0, 5),

where Normal+ and Cauchy+ denote the half-Normal and half-Cauchy distributions.

On the choice of these priors for the scale parameters, see Gelman et al. (2006). Note

that centering the individual-level, the team-cluster-level, and the position-level pa-

rameters in (3.4) at µα, µγ, µβ, and µρ would make the model nonidentifiable, because

a constant could be added to each of these hyperparameters without changing the

predictions of the model. This is the motivation for centering these prior distributions

at zero.

3.4.2 Mixture model (MIX)

Even if we found that some players have a tendency to be ejected from matches due

to red cards, for instance, or tend to suffer injuries at a high rate, it would still be

very challenging to arrive at sufficiently informative probability distributions for these

events. Even with detailed player histories over many seasons, it would be hard to

predict the number of missing matches in the current season. Nevertheless, we can

try to incorporate the missingness behavior intrinsic to the game into our models.

Assuming that it is very rare for a player to play in every match during a season, we

can try to model the overall propensity for missingness. A general way of doing this

entails introducing a latent variable, which we denote Vit and define as

Vit =







1, if player i participates in match t,

0, otherwise.

If for each player i we let πit = Pr(Vit = 1), then we can specify a mixture of a

Gaussian distribution and a point mass at 0 (Gottardo and Raftery, 2008)

p (yit | ηit, σy) = πit Normal (yit | ηit, σy) + (1− πit) δ0, (3.5)
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where δ0 is the Dirac mass at zero and ηit is the same linear predictor as before. The

probability πit is modeled using a logit regression,

πit = logit−1
(

p0 + ζj[i]ȳi,t−1

)

, (3.6)

which takes into account predictors that are likely to correlate with player participa-

tion. The variable ȳi,t−1 is the average rating for player i up to match t − 1, and p0

is an intercept for the logit model. How to model πit could be the subject of entire

papers, but better models would likely require variables beyond what we have in our

dataset (e.g., injury histories). Our simplistic model will suffice for our purposes of

exploring what we can do with only this dataset. For the new parameters introduced

in (3.6) we use the weakly informative priors

p0 ∼ Normal(0, 2.5),

ζj
iid∼ Normal(0, 1), j = 1, . . . , J.

The models for the group-level parameters and the hyperpriors are the same as in

3.4.1. The Stan code for the MIX model is in Appendix B.

3.4.3 Refitting the HAr model accounting for missing data

As we have already mentioned, it is difficult to deal with the issue of missing data in

such a way as to yield a reasonable estimate of the cumulative ratings over a season.

The MIX model may be seen as a natural attempt at modeling the missingness, while,

to ease the problem, in the initial HAr model missing values were treated as zeros and

not modeled. We have already speculated about the legitimacy of this approach, but

we are only partially interested in the cumulative rating over the entire season and are

also interested in assessing the predictive accuracy of our models game by game. That

is, we also want to answer the question: how will a player perform if they play in the

match? One way to do this is by treating each missing player rating as an unknown

parameter rather than somewhat arbitrarily fixing it at zero. As broadly outlined in

Gelman et al. (2013), Bayesian inference draws no distinction between missing data

and parameters, so the target distribution is the joint posterior distribution of the

missing data and other model parameters conditional on the observed data.

Let y represent the complete data we could have observed in the absence of missing

values; we split our data matrix into two subsets, y = (yobs, ymis), where yobs denotes
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the observed values and ymis denotes the missing values. We also define I to be the

inclusion matrix such that Iit = 1 if yit is observed and Iit = 0 if yit is missing. In

this setup, yobs are data and ymis are parameters. For convenience, we specify our

new augmented model as

yit =







yobsit , if Iit = 1

ξit, if Iit = 0,
i = 1, ..., N, t = 1, ..., T (3.7)

where yobsit is an observed rating for player i in match t and each ξit is a parameter.

The toy Stan program reported below shows one way of writing a joint model for the

observed data and the missing data.

data {

int N_obs;

int N_mis;

real y_obs[N_obs]; // data

}

parameters {

real eta;

real<lower=0> sigma;

real xi[N_mis]; // parameters

}

model {

vector[N_obs + N_mis] y = append_row(y_obs, xi);

target += normal_lpdf(y | eta, sigma); // log density

}

The variable y obs represents data and xi are parameters. For brevity, in this toy

example we leave the default flat priors on eta and sigma, omit predictor variables,

and assume the data is a vector rather than an N ×T matrix. The same idea is then

incorporated into the HAr model from 3.4.1. We refer to this modified model as the

HAr-mis model.
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3.5 Results

3.5.1 Estimates

We fit the models via Markov chain Monte Carlo using RStan Stan Development

Team (2016a), the R interface to the Stan C++ library Stan Development Team

(2016b), and monitored convergence as recommended in Stan Development Team

(2016c). Figure 3.3 shows the parameter estimates.

For all models, the β, γ and δ vectors are almost all shrunk towards their grand

mean 0, with little variability. For the position-specific vector ρ, the HAr-mis and

MIX models estimate slightly positive values (approximately 0.5) for midfielders (ρ2)

and defenders (ρ3), while for the HAr model these parameters are shrunk close to zero.

The goalkeeper effect (ρ4) is slightly positive for the HAr model but clearly negative

for the HAr-mis and MIX models. For all models these position-level parameters have

larger posterior uncertainties than the other parameters. All three models recognize

a slight advantage due to playing at home (θ > 0). Also in Figure 3.3 we see that for

the λ’s, the coefficients on the lagged average ratings, the estimates obtained from

the HAr model are much larger than those obtained under the HAr-mis and MIX

models, which again give nearly identical estimates. Since for every match day t

these coefficients are multiplied by the lagged average rating ȳi,t−1, we believe that

the larger λ estimates from the HAr model are the result of coding the missing values

as zeros.

For the MIX model only there are also additional parameters ζ1, . . . , ζ4 that scale

the lagged average rating in the logit model (3.6). These parameters are all positive

—which corresponds to the intuition that higher ratings are associated with higher

probabilities of participating in the next match— and they also exhibit non-negligible

variation across positions (for goalkeepers, ζ4, the estimated association is strongest).

3.5.2 Inference through fake data simulation

In this section we give an example of a more interesting comparison focusing on

simulating hypothetical players rather than comparing parameter estimates.

Comparing parameter estimates across models is standard practice, but we are

more interested in the implications of the parameters for the outcome variable rather

than the parameters themselves. For our purposes it should be more informative to
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Figure 3.3: Posterior means ± standard deviations for the model parameters common

to the HAr, HAr-mis, and MIX models. βk,t and γk are the parameters for the

opposing team-cluster in match t and the player’s team-cluster (k = 1 the weakest,

k = 5 the strongest). The parameters δj (coefficients on initial price), λj (coefficients

of the lagged average rating) and ρj all vary by position (1 =Forward, 2 =Midfield,

3 =Defender, 4 =Goalkeeper). θ is the coefficient for the home/away predictor. σy is

the individual-level standard deviation and the other σ’s are the hierarchical standard

deviation parameters. For the MIX model, the ζ’s are the coefficients on the lagged

average rating from (3.6).
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Figure 3.4: Predicted ratings of hypothetical players differing only in their position.

Predictions from each of the three models are shown for 19 matches for each of 237

players (the size of our dataset), all playing at home (hit = 1), all playing on a team

in cluster k = 3 against an opponent in cluster k = 3, with standardized average

position price q̄j[i], j = 1, . . . , J, i = 1, . . . , N .

simulate outcomes under each of the models for players differing only in their position.

We can then directly compare the variability in the ratings for these hypothetical

players. Note that comparing predictions rather than parameter estimates would

be even more essential if we were fitting logistic regression models (or other GLMs)

rather than Gaussian linear models.

We predict ratings for several players at different positions on the field and with

the average position price in virtual money, all on the same cluster team, all play-

ing against the same cluster team, and all playing at their home stadium. Figure 3.4

shows the predicted ratings from each of the models for 19 new matches and N = 237

(the size of our dataset) hypothetical players. For the HAr model, the position vari-

ability appears to be very small when compared with the variability in the predictions

from the the HAr-mis model and, a bit less, the MIX model. Moreover, the predicted

values for the HAr model are shrunk together and turn out to be too much low: this

failure of the HAr model can be explained by the fact that it treats missed matches

as zeros and, then, it will tend to favor players with fewer zeros.

Conversely, the simulations from the HAr-mis model are more clearly separated
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into strata corresponding to the different positions and the hierarchy of positions is

correct: forwards tend to register the highest simulated ratings, then midfielders,

defenders, and goalkeepers. The MIX model is less able to clearly separate the

positions in the predictions but it does get the correct ordering on average. As

expected, it also predicts a non-negligible number of zeros (missing values).

Here we only show the comparison made by varying a player’s position, but anal-

ogous visualizations can be made to explore the effect of changing other variables.

3.6 Posterior predictive checks and predictions

Now that we have estimated all of the models, we turn our attention to evaluating

the fit of the models to the observed data as well as the predictive performance of the

models on hold-out data. We use the 19 match days comprising the first half of the

Serie A season —the andata— as training data, and for every player in the dataset we

make in-sample predictions for those 19 matches as well as out-of-sample predictions

for the remaining 19 matches —the ritorno. As usual in a Bayesian framework, the

prediction for a new dataset may be directly performed via the posterior predictive

distribution for our unknown set of observable values. Following the notation of

Gelman et al. (2013), we denote by ỹ a generic unknown observable. Its distribution

conditional on the observed y is

p(ỹ|y) =
∫

Θ

p(ỹ, θ|y) dθ =
∫

Θ

p(ỹ|θ) p(θ|y) dθ, (3.8)

where the independence of y and ỹ conditional on θ is assumed. We are also implicitly

conditioning on the observed predictors. Sampling from this posterior predictive

distribution will allow us to both assess the fit of the model to observed data and

also make out-of-sample predictions that average over the posterior.

3.6.1 In-sample posterior predictive checks

To assess how well the models fit the training data, for each draw of the parameters

from the posterior distribution we draw a dataset from the posterior predictive dis-

tribution of the outcome under each of the models. We should expect the in-sample

predictive performance to be better than performance on out-of-sample prediction

tasks (Gelman, Hwang and Vehtari, 2014; Vehtari et al., 2017). Figure 3.5 shows an
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Figure 3.5: Observed vs. median predicted cumulative ratings for selected team

Napoli during the first half of the 2015–2016 Serie A season.

example of a graphical posterior predictive check focusing on the cumulative ratings

for each player over the matches in the training data. For illustration purposes, here

we only show the results for one team, Napoli, but equivalent plots could be made

analogously for all the other teams. The dashed black lines represent the observed

values, while the red, green, blue lines represent predictions from the HAr, HAr-mis

and MIX models, respectively.

For many of the players all of the models make reasonable predictions. However,

for players with many missed matches the HAr and MIX models outperform the

HAr-mis model (see the plot for El Kaddouri, for instance). The HAr-mis model

will perform well on many of the predictive tasks, but it is not designed to predict

in-sample cumulative ratings. The cumulative rating is very sensitive to the number

of missing values, but for each missing value the HAr-mis will predict a plausible

rating for if the player had played instead of a zero.

Figure 3.6 provides a different graphical check of the model fitting. Each row of
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plots shows the distribution of a test statistic T (yrep) computed over the replicated

datasets yrep generated from the posterior predictive distribution under each of the

models. The vertical black lines indicate the value of T (y), the statistic computed

from the observed data. If we consider the distributions of these statistics —mean,

median, minimum, maximum, and standard deviation— we immediately notice that

the three models differ in their ability to replicate many of these features of the data.

According to the mean, the median and standard deviation, the MIX model seems

to be best at capturing these aspects of the training data.

In the fourth row we can see that the HAr model severely underestimates the

minimum rating in the data, the HAr-mis model predicts a reasonable distribution

of the minimum, and for the MIX model the distribution for the minimum is highly

concentrated around 0, which is due to the nature of the model.

On the other hand, it is the MIX and the HAr-mis models that substantially

underestimate the maximum rating, while the HAr model is able to predict plausible

maximums when compared to the observed value. However, Figure 3.7 reveals that

although the HAr-mis model fails to predict the overall maximum, it does predict

reasonable maximum values for defenders and goalkeepers. Its failure to reproduce

the maximums for the forwards and midfielders is explained by the rarity of their

maximums (17 and 14, respectively) in the training data. Only one rating as high as

17 was observed in the first half of the season and there were only three ratings of at

least 17 observed over the full season (about 1 in every 2000 observed ratings). To

allow the HAr-mis model to predict such extreme values it may be possible to use a

t-distribution instead of a Gaussian model, but for our purposes in this chapter the

ability of a model to replicate these very rare ratings is not so essential.

3.6.2 In-sample and out-of-sample calibration

We are also interested in the calibration of the models on both the training and

hold-out data. In Figs. 3.8, 3.9, and 3.10 we display the median predictions and

50% posterior predictive intervals under the HAr, MIX and HAr-mis models for our

selected team Napoli, overlaying the observed data points. In a broader analysis

we could plot and analyze these graphs for each team in Serie A under each of the

models.

In a well-calibrated model we expect half of the observed values to lie outside
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Figure 3.6: In-sample posterior predictive checks of test statistics for the HAr, MIX

and HAr-mis models. For a particular test statistic T the plots show T (yrep) (his-

togram) and T (y) (thick vertical line). Each column corresponds to one of the three

models, and each row to a different statistic T (mean, median, sd, minimum, max-

imum). We can see that the HAr model predicts much lower minimum values than

the observed minimum. On the other hand, under the MIX model the distribution

for the minimum is highly concentrated around zero.
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Figure 3.7: Posterior predictive check for T (y)=max over different positions for the

HAr-mis model. The thick vertical line is the observed value.
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Figure 3.8: Calibration check for the HAr model for selected team Napoli. Blue

points are observed values yobs, red points are the zeros. The light gray ribbons

represent 50% posterior predictive intervals and the overlaid dark gray lines are the

median predictions. The vertical black lines separate the in-sample predictions from

the out-of sample predictions.
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Figure 3.9: Calibration check for the MIX model for selected team Napoli. Blue points

are observed values yobs, red points are the missing values. The light gray ribbons

represent 50% posterior predictive intervals and the overlaid dark gray lines are the

median predictions. The vertical black lines separate the in-sample predictions from

the out-of sample predictions.
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Figure 3.10: Calibration check for the HAr-mis model for selected team Napoli. Blue

points are observed values yobs, red points are the missing values. The light gray

ribbons represent 50% posterior predictive intervals and the overlaid dark gray lines

are the median predictions. The vertical black lines separate the in-sample predictions

from the out-of sample predictions.
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the corresponding 50% intervals. By this measure we can see in the plots that the

HAr-mis and MIX model have decent but not excellent calibration, since for many

of the players —particularly the goalkeeper and defenders— the 50% intervals cover

more than 50% of the observed (blue) points. Conversely, for the volatile superstar

Higuáın (an outlier even among forwards) only a many fewer points fall inside the

intervals. Although the HAr model seems to be generally better calibrated, its main

flaw consists in overestimating the defenders (and some other players) in the second

part of the season, as already alluded in Section 3.5.2. Furthermore, the HAr model

appears to identify an increasing trend in the ratings that is not actually supported

by the data. As will be clear in Section 3.6.3, the out-of-sample predictions from the

HAr model will in fact tend to be unreliable, while the MIX and the HAr-mis models

tend to both better detect the best players on average.

3.6.3 Out-of-sample predictive checks

RMSE on hold-out data

For out-of-sample prediction we fit the models over the T = 19 matches in the first half

of the season and then generate predictions for the T ⋆ = 19 matches in the second

half of the season. For each player i = 1, . . . , N and for each posterior predictive

simulation s = 1, . . . , S we compute the root mean square error (RMSE) over the

matches T +1, ..., T + T ⋆ in the held out data (corresponding to matches 20 through

38 of the season),

RMSE
(s)
i =

√

√

√

√

∑T+T ⋆

t=T+1

(

ỹ
(s)
it − yit

)2

T ⋆
. (3.9)

In the above equation ỹ
(s)
it is the sth simulation from the posterior predictive distri-

bution of the predicted rating for player i at match t, and yit is the corresponding

observation. From this we obtain an RMSE distribution for each player.

Averaging over the simulations for each player and then averaging over players

within positions we compute

RMSEj =

∑#(i∈j)
i=1 S−1

∑S
s=1 RMSE

(s)
i

#(i ∈ j)
, j = 1, ..., J,

where #(i ∈ j) is the number of observations of position group j. Figure 3.11 shows

these position-average RMSE values under each of the three models. The trend is the
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Figure 3.11: Average RMSE for the different positions for each model. The trend is

the same across models: better predictions are obtained for goalkeepers, followed by

defenders, midfielders, and finally forwards. The HAr-mis and MIX models register

the lowest RMSE.

same across all models and suggests that our predictive ability is best for goalkeepers,

followed by defenders, midfielders, and then forwards. Comparing across models, the

missing data models (MIX and HAr-mis) perform better than the HAr model. This

is further confirmation that modeling the missing values is important for predictive

accuracy on hold-out data.

It is worth noting that in a dynamic framework, where the models could be up-

dated between matches, the RMSEs would almost certainly be much lower than the

RMSEs computed for the second half of the season in one batch. For instance, fit-

ting our models at time t and projecting for match t + 1, we could account for the

disqualification of certain players, injuries, etc. If we know in advance that a player

is disqualified for the next match we would have yi,t+1 = ỹi,t+1 = 0, and the corre-

sponding RMSE would be zero.

Roster selection

Based on average predicted ratings for the held-out data from the second half of

the 2015–2016 Serie A season, Figure 3.12 displays the best teams of eleven players

that can be assembled from the available players according to each of the models

80



Chapter 2 - Modelling soccer performance 81

using their posterior medians. Also shown is the best team assembled using the

observed ratings from the same set of matches. Here we assume that, in addition to a

single goalkeeper, a team is comprised of four defenders, three midfielders, and three

forwards. This is a common structure, although certainly many other formations are

also used. As is evident at a first glance, the predictions obtained from the HAr

model are quite inefficient. As we saw in the calibration plots in Figure 3.8, the

HAr model tends to overestimate the player ratings, and we can see here that the

projected ratings for the top players are quite far from their averages computed from

the observed ratings in the hold-out data.

The rosters assembled based on the predictions from the HAr-mis and MIX models

are identical except for the ordering of the players within the positions. Four of the

eleven players (Acerbi, Pogba, Hamsik, Higuáın) from the team based on the actual

ratings are included in the HAr-mis and MIX teams and, of the players that don’t

match, several are close. Dybala, the third best forward according to the models, is

also rated highly (fifth best) according to the observed ratings. Rudiger, the second

best defender according to both models, also has high observed mean rating (the

eighth best among the 90 defenders). And Bonucci, one of the defenders included

based on the observed ratings is also ranked highly by the HAr-mis model (ninth

best) and MIX model (eleventh best).

Informally, this is further evidence that modeling the missingness allows us to

obtain better out-of-sample predictions. Unlike the HAr model, the rosters selected by

the MIX and the HAr-mis models appear to be quite competitive, which confirms the

better performance we saw earlier in both the RMSE and the calibration comparisons.

3.7 Discussion

Although we are interested in our predictions for their own sake, our primary goal in

this chapter has been of an exploratory rather than confirmatory nature. Given the

lack of published research on modeling this kind of data within a Bayesian framework,

we hope our proposed models and process will be useful to other researchers interested

in working on individual-level predictions in the presence of noisy soccer data.

We proposed various hierarchical models for predicting player ratings and fit them

according to two different scenarios: in the first scenario the HAr treated the missing

values as zeros; in the second scenario the MIX and the extended HAr-mis models
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Figure 3.12: Best teams according to out-of-sample prediction of average player rat-

ings for the HAr, MIX and HAr-mis model compared to the observed best team for

the second part of the season. The averaged ratings are computed for those players

who played at least 15 matches in the second half of the season.

82



Chapter 2 - Modelling soccer performance 83

allow for modeling the missing values themselves. We think the second framework is

appealing in theory and we found in practice that the predictive predictive perfor-

mance is good both in-sample and out-of-sample.

As expected, we found that a player’s position is, in most cases, an important

factor for predicting the Fantacalcio ratings. However, it is somewhat counterin-

tuitive that the inferences from these models suggest that the quality of a player’s

team, the opposing team, and the initial fantasy price do not account for much of

the variation in the ratings (net of the other variables). It is also notable that the

association between the current and lagged performance ratings —expressed by the

average lagged rating—- is slightly different from zero after accounting for the other

inputs into the models. Future research should consider whether other functional

forms for describing associations over time are more appropriate, to what extent the

inclusion of additional information in the models (e.g. injury data) improves the

predictive performance, and if more informative priors can be developed at the po-

sition and team levels of the models. As is, the models may be over-shrinking these

parameters. Another question to assess in the future is the division into training and

testing datasets. In this chapter we split the season in half, but these models should

also be useful dynamically, using data available through match day t to predict rating

for match day t+ 1.

The recent successes in the soccer analytics industry are due in large part to

the increasing number of available metrics for analyzing and describing the game.

However, even as the amount and variety of publicly available soccer data grows

—particularly data at the individual player/match level— the interpretability and

predictive relevance of that data will remain a question. In fact, it is not straight-

forward to identify whether a player is or is not performing well —in the Fantacalcio

framework this is translated in collecting more point scores— based on metrics such

as the total distance run over the course of a match, the number (or percentage)

of passes successfully completed, the total number of shots, the number of shots on

target, or the number of “dangerous” attacks. According to our current knowledge,

the only attempt to using these and many other metrics for measuring player per-

formance is the OPTA index, which positively weights certain game features (e.g.,

goals, assists, shots, minutes) and negatively weights others (e.g., missed passes, yel-

low cards, missed goals, etc.). At least we are not aware of other attempts but we do

not have proprietary information about what teams and other companies are doing
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(see www.optasports.com for further details about the firm and its activity). De-

spite its appeal, the weighting used for the index appears not to be formulated using

statistical methodology and tools like principal component analysis, cluster analysis,

or any kind of regression analysis.

Compared to attempts like the OPTA index, our ratings may be crude approx-

imations to player performance since they gloss over many games events. But the

formulation of an index based on as many variables as possible for describing the

players’ performances has not been the aim of this chapter. The attractiveness of our

approach —not necessarily all of our particular choices in model construction but

our approach in general— is that it is based on a coherent statistical framework: we

have an outcome variable y (the player rating) that is actually available, probability

models relating the outcome to predictors, the ability to add prior information into

an analysis in a principled way, and the ability to propagate our uncertainty into the

predictions by drawing from the posterior predictive distribution. Our approach is

also transparent, fits naturally into powerful statistical frameworks for model criticism

(e.g., posterior predictive checking), and can easily be modified by anyone who has

different ideas about the form of the relationship between the outcome and predictors.

84



Chapter 4

Modeling the soccer outcome using

bookmakers’ information

4.1 Introduction

In recent years the challenge of modeling football outcomes has gained increasing

attention, in large part due to the potential for making substantial profits in betting

markets. According to the current literature, this task may be achieved by adopting

essentially two different kinds of modeling strategies: the so called direct models

for the number of goals scored by two competing teams and the indirect models for

estimating the probability of the categorical outcome Win/Draw/Loss —hereafter,

three-way process.

The basic assumption is that the numbers of goals scored by the two teams follow

two Poisson distributions. Their dependence structure and the specification of their

parameters are the most relevant further assumptions according to the literature

and for this reason the first framework is of interest for us. The scores’ dependence

issue is in fact much debated, and the discussion can not yet be concluded. As

one of the first contributors to the football scores’ modeling, Maher (1982) used

two conditionally independent Poisson distributions for the goals scored by the home

team and the away team. Dixon and Coles (1997) started from the Maher’s work and

extended his model introducing a parametric dependence between the scores. This

represents also the justification for the bivariate Poisson model, introduced in Karlis

and Ntzoufras (2003) in a frequentist perspective and in Ntzoufras (2011) under a

Bayesian perspective. On the other hand, Baio and Blangiardo (2010) assumed the
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conditional independence within hierarchical Bayesian models, on the ground that

the goals’ correlation is already taken into account by the hierarchical structure.

Similarly, Groll and Abedieh (2013) showed that up to a certain amount the scores’

dependence of two competing teams may be explained by the inclusion of some specific

teams’ covariates in the linear predictors. On the other hand, Dixon and Robinson

(1998) noted that modeling the dependence along a single match is worth: in such a

case, a temporal structure in the ninety minutes is required.

The second common assumption is the inclusion in the models of some teams’

effects to allow for the attack and the defense strengths of the competing teams.

Generally, they are used for modeling the scoring rate of a given team, and in much

of the mentioned literature they do not vary over time. Of course, this is a major

limitation of these models. Dixon and Coles (1997) tried to overcome this problem by

downweighting the likelihood exponentially over time, in order to reduce the impact

of matches far from the current time of evaluation. Whereas Rue and Salvesen (2000)

assumed that the teams’ specific effects for the attack and the defense vary over the

time, and they frame their analysis in a Bayesian context.

For our aims the scores’ dependence assumption may be relaxed, and in this chap-

ter we adopt a conditional independence assumption between the scores. This choice

allows in fact for a simpler formulation for the likelihood function and simplifies the

inclusion of the bookmakers’ odds in our model. Concerning the dynamic assumption

of the teams-specific effects, we use an autoregressive model by centering the effect

of seasonal time τ at the lagged effect in τ − 1 plus a fixed effect.

Whatever are the choices for the two assumptions discussed above, the model

proposed in this context was built with both a descriptive and a predictive goal, and

its parameters’ estimates/model probabilities were often used for building efficient

betting strategies (Dixon and Coles, 1997; Londono and Hassan, 2015). In fact, the

well known expression ‘beating the bookmakers’ is often considered a cornerstone for

whoever tries to predict soccer —or more generally, sports— results. As mentioned by

Dixon and Coles (1997), to win money from the bookmakers requires a determination

of probabilities which is sufficiently more accurate than those obtained from the odds.

On the other hand, it is empirically known that betting odds are the most accurate

source of information for forecasting sports performances (Štrumbelj, 2014). However,

at least two issues deserve a deep analysis: how to determine probability forecasts

from the raw betting odds and how to use this huge source of information within a
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forecasting model (e.g., for the number of goals). Concerning the first point, it is

well known that the betting odds do not correspond to precise probabilities; in fact,

to make a profit, bookmakers set unfair odds, and they have a ‘take’ of 5-10%. In

order to derive a set of fair probabilities from these odds, many authors used the

so called basic normalization procedure, by normalizing the inverse odds up to their

sum. Alternatively, Forrest et al. (2005) and Forrest and Simmons (2002) proposed

a regression model-based approach, modeling the betting probabilities through an

historical set of betting odds and match outcomes. But Štrumbelj (2014) showed

that the so called Shin’s procedure (Shin, 1991, 1993) gives overall the best results,

being preferable both to the basic normalization and to the regression approaches.

Concerning the second issue, a very sparse literature focused on using the existing

betting odds as a part of a statistical model for improving the predictive accuracy

and the model fit. Londono and Hassan (2015) used the betting odds for eliciting

the hyperparameters of a Dirichlet distribution, and then updated them based on

observations of the categorical three-way process. No author tried to implement a

similar strategy within the framework of the direct models.

In this chapter we tried to fill the gap creating a bridge between the betting odds

—and betting probabilities— on one hand and the statistical modeling of the scores

on the other hand. Once we transform the betting odds into precise probabilities, we

develop a procedure for (i) infer from these the implicit scoring intensities accord-

ing to the bookmakers (ii) use these implicit intensities directly in the conditionally

independent Poisson model for the scores, within a Bayesian perspective. We are

interested both in the estimation of the models parameters, and in the prediction of

a new bunch of matches. Intuitively, the latter task is much harder than the former

one, since football is per se noisy and hardly predictable. However, we believe that

the combination of the betting odds with an historical set of data may give predictions

much more accurate than those obtained from a single source of information.

In Section 4.2 we introduce two methods proposed by the current literature for

transforming the three-way bookmakers’ betting odds in precise probabilities. In

Section 4.3 we introduce the full model, along with the implicit scoring rates. The

results and predictive accuracy of the model on the top-four European leagues —

Bundesliga, Premier League, La Liga and Serie A— are presented in Section 4.4

and summarized through posterior probabilities and graphical checks. Section 4.6

concludes.
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4.2 Transforming the betting odds in precise prob-

abilities

The connection between betting odds and probabilities has been broadly investigated

over the last decades. Before proceeding, we introduce the formal definition of odd

and the related notation we are going to use in the rest of the chapter. An odd about

a given event is usually specified as the amount of money we would win if we bet

one unit on that event. Thus, the odd 2.5 corresponds to 2.5 euro (or dollars) we

would win betting 1 euro. The inverse odd —usually denoted as 1:2.5— corresponds

to the unfair probability associated to that event. Let Om = {oWin, oDraw, oLoss},
Πm = (πWin, πDraw, πLoss) and ∆m = {‘Win’, ‘Draw’, ‘Loss’} denote respectively the

vector of the inverse betting odds, the vector of the estimated betting probabilities

and the set of the three-way possible results for the m-th game. As widely known,

the betting odds do not correspond to precise probabilities. In fact, the sum of the

inverse odds for a single match is greater than one (Dixon and Coles, 1997) in order

to guarantee the bookmakers’ profit.

As mentioned by Štrumbelj (2014), there is empirical evidence that the betting

odds are the most accurate available source of probability forecasts for sports; in

other words, forecasts based on odds-probabilities have been shown to be better or at

least as good as statistical models which use sport-specific predictors and/or expert

tipsters.

However, some issues remain open. Among these, there is a strong debate on

which method to use for inferring a set of unbiased probabilities from the raw betting

odds. We can transform them into unbiased probabilities by using two procedures

proposed in the literature: the basic normalization —dividing the inverse odds by

the booksum, as broadly explained in Štrumbelj (2014)— and the Shin’s procedure

described in Shin (1991, 1993). Štrumbelj (2014), Cain et al. (2002, 2003) and Smith

et al. (2009) showed that the Shin’s probabilities improve over the basic normaliza-

tion: in Štrumbelj (2014) this result has been achieved by the application of the

Ranked Probability Score (RPS) (Epstein, 1969), which may be defined as a discrep-

ancy measure between the probability of a three-way process outcome and the actual

outcome.

In this chapter we do not actually focus on comparing these two procedures; rather,
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we are interested in using the probabilities derived from them for statistical and

prediction purposes, as will be more clear later.

(A) Basic normalization

πi =
oi
β
, i ∈ ∆m, (4.1)

where β =
∑

i oi is the so called booksum (Štrumbelj, 2014). The method

gained a great popularity due to its simplicity.

(B) Shin’s procedure

In the model proposed by Shin (1993), the bookmakers specify their odds in

order to maximize their expected profit in a market with uninformed bettors and

insider traders. The latters are those particular actors which, due to a superior

information, are assumed to already know the outcome of a given event —e.g.

football match, horse race, etc— before the event takes place. Their contribute

in the global bets volume is quantified by the percentage z. Jullien et al. (1994)

used the Shin’s model for explicitely working out the expression for the betting

probabilities:

π(z)i =

√

z2 + 4(1− z)
o2i∑
i oi

− z

2(1− z)
, i ∈ ∆m, (4.2)

so that
∑3

i=1 π(z)i = 1. The current literature refers to these as the Shin’s

probabilities. The formula above is a function depending on the insider trading

rate z, which Jullien et al. (1994) suggested to estimate by nonlinear least

squares as:

Argmin
z
{

3
∑

i=1

π(z)i − 1}.

The value here obtained may be defined as the minimum rate of insider traders

that yields precise probabilities corresponding to the vector of inverse betting

odds O.

Both these methods yield precise probabilities, with the difference that the Shin’s

procedure is a function of the insider traders rate and needs to be minimized for every
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Figure 4.1: Comparison between Shin probabilities (x-axis) and basic normalized

probabilities (y-axis) for the Spanish La Liga championship (seasons from 2007/2008

to 2016/2017), according to seven different bookmakers.

match. Figure 4.1 displays the three-way betting probabilities obtained through the

two procedures described above. As may be noticed, the Draw probabilities obtained

with the basic normalization tend to be higher than those obtained with the Shin’s

procedure. Conversely, as a Home win and an Away win tend to become more likely,

the Shin’s procedure tends to favor them.

As is intuitive, a higher probability of an home win should somehow be associated

with a greater number of goals scored by the home team, and the same for an away

team.

4.3 Model

4.3.1 Model for the scores

Let y = (ym1, ym2) denote the vector of observed scores, where ym1 and ym2 are

respectively the number of goals scored by the home team and by the away team in

the m-th match of the dataset. According to the motivations provided by Baio and

Blangiardo (2010), in this chapter we adopt a conditional independence assumption

between the scores. This choice allows in fact for a simpler formulation for the

likelihood function and for the direct inclusion of the bookmakers odds into the

model through the Skellam distribution (Karlis and Ntzoufras, 2009). The model for

the scores is then specified as
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ym1|θm1 ∼ Poisson(θm1)

ym2|θm2 ∼ Poisson(θm2),

ym1 ⊥ym2|θm1, θm2,

(4.3)

where y is modelled as conditionally independent Poisson and the joint parameter

θ = (θm1, θm2) represents the scoring intensities in them-th game, respectively for the

home team and for the away team. In what follows, we will refer to (4.3) as the basic

model, which is estimated using the past scores. The main novelty of this chapter

consists in enriching this specification by including the extra information which stems

from the bookmakers betting odds. Thus, for each pair of match m and bookmaker

s, s = 1, ..., S the betting probabilities πs
i,m, i ∈ ∆m derived with one of the methods

in Section 4.2 may be used for finding out the values θ̂s = (θ̂sm1, θ̂
s
m2) which solve the

following nonlinear system of two equations:

πs
Win,m + πs

Draw,m =P (ym1 ≥ ym2|θsm1, θ
s
m2)

πs
Loss,m =P (ym1 < ym2|θsm1, θ

s
m2).

(4.4)

The existence of these values is guaranteed by the fact that, under (4.3), ym1 −
ym2 ∼ PD(θm1, θm2), where PD denote the Poisson-Difference distribution, also

known as Skellam distribution, with parameters θm1, θm2 and mean θm1 − θm2. In

such a way, we obtain for each pair (m, s) the implicit scoring rates θ̂sm1, θ̂
s
m2, somehow

inferring the scoring intensities implicit in the three-way bookmakers’ odds. Now, we

consider our augmented dataset by including as auxiliary data the observed θ̂sm1, θ̂
s
m2:

for every m, our new data vector is represented by

(y, θ̂s) = (ym1, ym2, θ̂
s
m1, θ̂

s
m2, s = 1, ..., S).

Now, from Equation (4.3) we move to the following specification:

ym1|θm1, λm1 ∼ Poisson(pm1θm1 + (1− pm1)λm1)

ym2|θm2, λm2 ∼ Poisson(pm2θm2 + (1− pm2)λm2),
(4.5)

where λm1, λm2 are bookmakers parameters introduced for modeling the additional

data θ̂sm1, θ̂
s
m2, s = 1, ..., S, as explained in the next section. Parameters pm1, pm2 are
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assigned a non-informative prior distribution, with hyper-parameters a and b, e.g.

pm· ∼ Beta(a, b).

4.3.2 Model for the rates

Equation (4.5) introduced a convex combination for the Poisson parameters, account-

ing for both the scoring rates θ·1, θ·2 and the bookmakers’ parameters λ·1, λ·2. Denot-

ing with T the number of teams, the common specification for the scoring intensities

is a log-linear model in which for each t, t = 1, ..., T :

log(θm1) = µ+ attt[m]1 + deft[m]2

log(θm2) = attt[m]2 + deft[m]1

(4.6)

with the nested index t[m] denoting the team t in the m-th game. The parameter

µ represents the well known football advantage of playing at home, and is assumed to

be constant for all the teams and over time, as in the current literature. The attack

and the defence strengths of the competing teams are summarized respectively by

the parameters att and def . Baio and Blangiardo (2010) and Dixon and Coles (1997)

assume that these team-specific effects do not vary over the time, and this represents

a major limitation in their models. In fact, Dixon and Robinson (1998) showed that

the attack and the defence effects are not static and vary even during a single match;

thus, a static assumption is often not reliable for making prediction and represents a

crude approximation of the reality. Rue and Salvesen (2000) proposed a generalized

linear Bayesian model in which the team-effects at match time τ are drawn from a

Normal distribution centered at the team-effects at the match time τ − 1, and with a

variance term depending on the time difference. Their choice is appealing and more

realistic, and we make a similar assumption considering the effects for the season τ

following a Normal distribution centered at the previous seasonal effect plus a fixed

component. For each t = 1, . . . , T, τ = 2, . . . , T :

attt,τ ∼ N(µatt + attt,τ−1, σ
2
att)

deft,τ ∼ N(µdef + deft,τ−1, σ
2
def ),

(4.7)

while for the first season we assume:
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attt,1 ∼ N(µatt, σ
2
att)

deft,1 ∼ N(µdef , σ
2
def ).

(4.8)

As outlined in the literature, we need to impose a ‘zero-sum’ identifiability con-

straint within each season to these random effects

T
∑

t=1

attt,τ = 0,
T
∑

t=1

deft,τ = 0, t = 1, . . . , T, τ = 1, . . . T ,

whereas µ and the hyperparameters of our model are assigned weakly informative

priors:

µ, µatt, µdef ∼N(0, 10)

σatt, σdef ∼Cauchy+(0, 2.5),

where Cauchy+ denotes the half-Cauchy distribution, centered in 0 and with scale

2.5.1 The team-specific effects modeled through Equation (4.7) and (4.8) are esti-

mated from the past scores of the dataset. As expressed in (4.5), we add a level to

the hierarchy, by including the implicit scoring rates as a separate data model. Given

then a further level which consists of S bookmakers, it is natural to consider λm1, λm2

as the model parameters for the observed θ̂sm1, θ̂
s
m2. More precisely, they represent

the means of two truncated Normal distributions for the further implicit scoring rates

model:

θ̂1m1, ..., θ̂
S
m1 ∼ truncN(λm1, τ

2
1 , 0,∞)

θ̂1m2, ..., θ̂
S
m2 ∼ truncN(λm2, τ

2
2 , 0,∞),

(4.9)

where truncN(µ, σ2, a, b) is the common notation for the density of a truncated

Normal with parameters µ ∈ R, σ2 ∈ R
+ and defined in the interval [a, b]. λm1, λm2

are in turn assigned two truncated Normal distributions:

λm1 ∼ truncN(α1, 10, 0,∞)

λm2 ∼ truncN(α2, 10, 0,∞),
(4.10)

with hyperparameters α1, α2.

1On the choice of the half-Cauchy distribution for scale parameters, see Gelman et al. (2006).
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4.4 Applications and results: top-four European

leagues

4.4.1 Data

We collected the exact scores for the top-four European professional leagues —Italian

Serie A, English Premier League, German Bundesliga and Spanish La Liga— from

season 2007/2008 to 2016/2017. Moreover, we also collected all the betting odds

—three-way odds and Over/Under odds— for the following bookmakers: Bet365,

Bet&Win, Interwetten, Ladbrokes, Sportingbet, VC Bet, William Hill. All these data

have been downloaded from the public available page http://www.football-data.

co.uk/. We are both interested in (a) posterior predictive checks in terms of repli-

cated data under our models and (b) out-of-sample predictions for a new dataset.

According to point (b), which appears to be more appealing for fans, betters and

statisticians, let Tr denote the training set, and Ts the test set. Our training set con-

tains the results of 9 seasons for each professional league, and our test set contains

the results of the 10-th season.

The model coding has been implemented in WinBUGS (Spiegelhalter et al., 2003)

and in Stan (Stan Development Team, 2016a). We ran our MCMC simulation for

H = 5000 iterations, with a burn-in period of 1000, and we monitored the convergence

using the usual MCMC diagnostic (Gelman, Carlin, Stern and Rubin, 2014).

4.4.2 Parameter estimates

As broadly explained in Section 4.3, the model in (4.5) combines historical informa-

tion about the scores and betting information about the odds. We acknowledge that

the scoring rate is a convex combination that borrows strengths from both the sources

of information. Figures 4.2- 4.5 display the posterior estimates for the attack and

the defense parameters associated to the teams belonging to the top-four European

leagues during the test set season 2016-2017. The bigger is the team-attack param-

eter, and the greater is the estimated attacking quality for that team; conversely,

the lower is the team-defense parameter, and the better is estimated the defense

power for that team. As a general comment, after reminding that these quantities

are estimated using only the historical results, the pattern seems to reflect the actual
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Figure 4.2: Posterior 50% confidence bars for the attack (red) and the defense (blue)

effects along the ten seasons for the teams belonging to the Bundesliga 2016/2017.

Wider posterior bars are associated to teams with fewer observations.

strength of the teams across the seasons. For example Juventus (Serie A), Bayern

Munich (Bundesliga), Barcelona and Real Madrid (La Liga), Chelsea and Manchester

City (Premier League) register the highest effects for the attack and the lowest for the

defense across the nine considered seasons: consequently, the out-of-sample estimates

for the tenth season mirror the previous performance. Conversely, weaker teams are

associated with an inverse pattern: see for instance Ingolstadt (Bundesliga), Mid-

dlesbrough (Premier League), Osasuna (La Liga) and Pescara (Serie A). It is worth

noting that some wide posterior bars are associated to those teams with fewer sea-

sonal observations: in fact, for simplicity we do not account for a relegation system

and some teams are less observed during the considered seasons.

Figure 4.6 displays the ordered 50% confidence bars for the marginal posteriors of

the probabilities parameter pm1, pm2,m = 1, . . . ,M which appear in (4.5), computed
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Figure 4.3: Posterior 50% confidence bars for the attack (red) and the defense

(blue) effects along the ten seasons for the teams belonging to the Premier League

2016/2017. Wider posterior bars are associated to teams with fewer observations.
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Figure 4.4: Posterior 50% confidence bars for the attack (red) and the defense (blue)

effects along the ten seasons for the teams belonging to the La Liga 2016/2017. Wider

posterior bars are associated to teams with fewer observations.
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Figure 4.5: Posterior 50% confidence bars for the attack (red) and the defense (blue)

effects along the ten seasons for the teams belonging to the Serie A 2016/2017. Wider

posterior bars are associated to teams with fewer observations.
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Figure 4.6: Ordered posterior 50% confidence bars for parameters pm1, pm2 for

German Bundesliga (from 2007-2008 to 2015-2016), 2754 matches.

for the German Bundesliga. Despite an high variability, these plots suggest that the

amount of information which stems from the bookmakers is comparable with that

arising from historical information. Perhaps, the convex combination in (4.5) seems

to be an adequate option for our purposes.

4.4.3 Model fit

As broadly explained in Gelman, Carlin, Stern and Rubin (2014), once we obtain

some estimates from a Bayesian model we should assess the fit of this model to the

data at hand and the plausibility of such model given the initial purposes for which we

built it. The principal tool designed for achieving this task is the posterior predictive

checking. This post-model procedure consists in verifying whether some additional

replicated data under our model are similar to the observed data. Thus, we draw

simulated values yrep from the joint predictive distribution of replicated data

p(yrep|y) =
∫

Θ

p(yrep, θ|y)dθ =
∫

Θ

p(θ|y)p(yrep|θ)dθ.

It is worth noting that the symbol yrep used here is different from the symbol ỹ

used in the next section. The former is just a replication of y, the latter is any future

observable value.

Then, we define a test statistic T (y) for assessing the discrepancy between the

model and the data. A lack of fit of the data with respect to the posterior predictive
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distribution may be measured by tail-area posterior probabilities, or Bayesian p-values

pB = P (T (yrep) > T (y)|y). (4.11)

As a practical utility, we usually do not compute the integral in (4.4.3), but we

compute the posterior predictive distribution through simulation. If we denote with

θ(s), s = 1, ..., S the s-th MCMC draw from the posterior distribution of θ, we

just draw yrep from the predictive distribution p(yrep|θ(s)). Hence, an estimate for

the Bayesian p-value is given by the proportion of the S simulations for which the

quantity T (yrep (s)) exceeds the observed quantity T (y). From an interpretative point

of view, an extreme p-value —too close to 0 or 1— suggests a lack of fit of the model

compared to the observed data.

Rather than comparing the posterior distribution of some statistics with their

observed values (Gelman, Carlin, Stern and Rubin, 2014), we propose a slightly

different approach allowing for a broader comparison of the replicated data under the

model. Figures 4.7 and 4.8 display a probability plot for comparing the observed goals’

difference y1 − y2 with the replicated distribution of yrep1 − yrep2 . The top-row graphs

provide a predictive check over the training set, where darker regions are associated

with a greater posterior probability. In correspondence of an observed goals’ difference

on the x-axis —here we consider only goals’ differences bounded between -3 and 3—

this graphical tool provides the most likely replicated goals’ difference. A perfect —

overfitting — model should display the black regions along the bisector. In fact, let

consider the bottom-row graphs that display the observed distributions of the goals’

difference for the leagues plotted above. These distributions are slightly asymmetric,

but the maximum is always concentrated at zero. In our dataset a goals’ difference

amounting at zero is more likely than a goals’ difference of, say, three. Perhaps,

the top-row checks are comforting, since they suggest a good fit in correspondence

of likely goals’difference — e.g. -1,0,1 — and a poorer fit when the goals difference

turns out to be more rare –say, 3.

Figure 4.9 displays the replicated distributions yrep1 − yrep2 (gray areas) and the

observed goals’ difference (red horizontal line) for the top-four European leagues.

From this plots the fit of the model seems good: in other words, the replicated data

under the model are plausible and close to the data at hand. As it may be noted, the

variability of the replicated goals’ difference amounting at -1, 0, 1 is greater than the

variability for a goals’ difference of -3 or 3. Moreover, the observed goals’ differences
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Figure 4.7: PP check: probability plot (top row), with darker regions associated

to higher posterior probabilities and distribution of the observed goals’ difference

(bottom row). For the top graphs: on x-axis the observed goals’ difference, on the

y-axis the predicted goals’ difference.
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Figure 4.8: PP check: probability plot (top row), with darker regions associated

to higher posterior probabilities and distribution of the observed goals’ difference

(bottom row). For the top graphs: on x-axis the observed goals’ difference, on the

y-axis the predicted goals’ difference.
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(a) Bundesliga (b) La Liga

(c) Premier League (d) Serie A

Figure 4.9: PP check for the goals’ difference y1 − y2 against the replicated goals’

difference yrep1 −yrep2 for the top-four European leagues . For each league, the graphical

posterior predictive checks show an excellent fit of the model to the data.

always fall within the replicated distributions. In correspondence of a draw —goal

difference of 0— the observed goals’ differences register an high posterior probability

if compared with the corresponding replicated distribution.

4.4.4 Prediction and posterior probabilities

The main appeal of a statistical model relies on its predictive accuracy. As usual in

a Bayesian framework, the prediction for a new dataset may be directly performed

via the posterior predictive distribution for our unknown set of observable values.

Following the same notation of Gelman, Carlin, Stern and Rubin (2014), let us denote

with ỹ a generic unknown observable. Its distribution is then conditional on the
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observed y,

p(ỹ|y) =
∫

Θ

p(ỹ, θ|y)dθ =
∫

Θ

p(θ|y)p(ỹ|θ)dθ,

where the conditional independence of y and ỹ given θ is assumed. Let ([ỹm1]h, [ỹm2]h)

denote the outcome for the m-th match at the h-th iteration of the Markov chain,

with h = 1, ..., H. Figure 4.10 displays the posterior predictive distribution for Real

Madrid-Barcelona, Spanish La Liga 2016/2017, and for Sampdoria-Juventus, Italian

Serie A. The dashed blue line in the top row plots indicates the observed result,

respectively (2,3) for the first match and (0,1) for the second match. According to

the model, the most likely result for the first game is (2,1), with an associated pos-

terior probability slightly greater than 0.08. Whereas the most likely result coincide

with the actual result (0,1) for the second game. The bottom-raw plots display the

posterior predictive distribution of a given match as well: here a red square is in

correspondence of the observed result and darker regions are associated to higher

posterior probabilities.

These plots are not actually suggesting a most likely result: it would be smart

betting on an event with an associated probability about 0.09? Maybe, not. Rather,

these plots provide a picture that acknowledges the large uncertainty of the predictive

distribution. We are not really interested on a model that often indicates as most

likely a rare result that has been actually observed; we suspect, in fact, that a model

which would favor the outcome (2,3) as most (or quite) likely, probably is not a good

model. Rather, being aware of the unpredictable nature of football, we would like

to grasp the posterior uncertainty of a match outcome in such a way that the actual

result is not extreme in the predictive distribution.

Table 4.1 and Table 4.2 report respectively the estimated posterior probabilities

for each team being the first, the second, the third and the first relegated, the second

relegated and the third relegated for each of the top-four leagues, together with the

observed rank and the achieved points. At the beginning of the 2016-2017 season,

Bayern Munich had an estimated probability 0.8168 of winning the German league,

as it actually did; in Italy, Juventus had an high probability of being the first (0.592)

as well. Conversely, Chelsea had a low associated probability to win the league at the

beginning of the season, and this is mainly due to the bad results obtained by Chelsea

in the last years. Of course, the model does not account for the players’/managers’
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Figure 4.10: Posterior predictive distribution of the possible results for the match

Real Madrid-Barcelona, Spanish La Liga 2016/2017, and Sampdoria-Juventus, Italian

Serie A 2016-2017. Both the plots report the posterior uncertainty related to the

exact predicted outcome. In the bottom row plots, darker regions are associated with

higher posterior probability and the red square is in correspondence of the observed

result.
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Table 4.1: Estimated posterior probabilities for each team being the first, the second

and the third in the Bundesliga, Premier League, La Liga and Serie A 2016-2017

together with the observed rank and the number of points achieved.

Team P(1st) P(2nd) P(3rd) Actual rank Points

Bayern Munich 0.8168 0.1508 0.0248 1 82

RB Leipzig 0.008 0.0284 0.0608 2 67

Dortmund 0.1332 0.4712 0.1856 3 64

Chelsea 0.1396 0.1592 0.1584 1 93

Tottenham 0.1096 0.132 0.1424 2 86

Man City 0.3904 0.2004 0.1388 3 78

Real Madrid 0.3868 0.4844 0.1076 1 93

Barcelona 0.5652 0.3536 0.0728 2 90

Ath Madrid 0.046 0.1348 0.5556 3 78

Juventus 0.592 0.2335 0.107 1 91

Roma 0.1535 0.263 0.2595 2 87

Napoli 0.206 0.2965 0.213 3 86

transfer market occurring in the summer period. In July 2016, Chelsea hired Antonio

Conte, one of the best European managers, who won the English Premier League at

his first attempt. For what concerns the relegated teams, it is worth noting the

high estimated probability associated to Pescara of being the worst team of the

Italian league (0.46). Globally, the model appears able to identify the teams with an

associated high relegation’s posterior probability.

Figure 4.11 provides posterior 50 % confidence bars (gray ribbons) for the predicted

achieved points for each team in top-four European leagues 2016-2017 at the end of the

respective seasons, together with the observed final ranks. At a first glance, the four

predicted posterior ranks appear to detect a pattern similar to the observed ranks,

with only a few exceptions. As may be noticed for Bundesliga (Panel (a)), Bayern

Munich’s prediction mirrors his actual strength in the 2016-2017 season, whereas

RB Leipzig was definitely underestimated by the model. Still, the model can not

handle the budget’s information, and RB Leipzig was one of the richest teams in

the Bundesliga 2016-2017. In the English Premier League (Panel (b)) Chelsea was

definitely underestimated by the model, whereas Manchester City actually gained the
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Table 4.2: Estimated posterior probabilities for each team being the first, the second

and the third relegated team in the Bundesliga, Premier League, La Liga and Serie

A 2016-2017, together with the observed rank and the number of points achieved.

Team P(1st rel) P(2nd rel) P(3d rel) Actual rank Points

Wolfsburg 0.0212 0.0236 0.0064 16 37

Ingolstadt 0.0952 0.0904 0.0912 17 32

Darmstadt 0.1192 0.1552 0.2528 18 25

Hull 0.1384 0.1512 0.1428 18 34

Middlesbrough 0.118 0.1448 0.1812 19 28

Sunderland 0.1272 0.1228 0.1144 20 24

Sp Gijon 0.1132 0.1112 0.1016 18 31

Osasuna 0.1464 0.174 0.228 19 22

Granada 0.138 0.1748 0.2476 20 20

Empoli 0.0795 0.066 0.0415 18 32

Palermo 0.132 0.1765 0.1205 19 26

Pescara 0.1215 0.178 0.46 20 18

predicted number of points (78). The predicted pattern for the Spanish La Liga (Panel

(c)) is extremely close to the observed one, apart for the winner (our model favored

Barcelona, second in the observed rank). The worst teams (Sporting Gijon, Osasuna

and Granada) are correctly predicted to be relegated. Also for the Italian Serie A

the predicted ranks globally match the observed ranks. The outlier is represented

by Atalanta, a team that performed incredibly well and gained the Europa League’s

qualification at the end of the last season. As a general comment, we may conclude

that these plots show a good model calibration, since more or less half of the observed

points fall in the posterior 50 % confidence bars.

4.5 Betting strategy

In this section we provide a real betting experiment, assessing the performance of

our model compared to the existing betting odds. In a betting strategy, two main

questions arise: it is worth betting on a given single match? If so, how much is worth

betting?
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Figure 4.11: Posterior 50% confidence bars (gray ribbons) for the achieved final

points of the top-four European leagues 2016-2017. Black points are the observed

points. Black lines are the posterior medians. At a first glance, the pattern of the

predicted ranks appears to match the pattern of the observed ranks and the model

calibration appears satisfying.

4.5.1 Three-way bets

In Section 4.2 we described two different procedures for inferring a vector of betting

probabilities Π from the inverse odds vector O. The common expression ‘beating the

bookmakers’ may be interpreted in two distinct ways: from a probabilistic point of

view and from a profitable point of view. According to the first definition, which

is more appealing for statisticians, a bookmaker is beaten whenever our matches’

probabilities are more favorable than his probabilities. Let πs
i,m denote as before

the betting probability provided by the s-th bookmaker for the m-th game, with

i ∈ ∆m = {‘Win’, ‘Draw’, ‘Loss’}. On the other hand, let Ym1 and Ym2 denote the

random variables representing the number of goals scored by two teams in the m-th

match. From our model in (4.5) we can compute the following three-way model’s
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Table 4.3: Three-way bets: average correct probability p̄ obtained through our

model, Shin probabilities and basic probabilities (here we take the average of the

seven considered bookmakers). Greater values indicate better predictive accuracy.

Model Shin Basic

Bundesliga 0.4010 0.4100 0.4072

Premier League 0.4349 0.4516 0.4480

La Liga 0.4553 0.4584 0.4549

Serie A 0.4430 0.4554 0.4507

posterior probabilities: pWin,m = P (Ym1 > Ym2), pDraw,m = P (Ym1 = Ym2), pLoss,m =

P (Ym1 < Ym2) for each m ∈ Ts, using the results of the Skellam distribution outlined

in Section 4.3. In fact, Ym1−Ym2 ∼ PD(γ̂m1, γ̂m2), where γ̂m1 = p̂m1θ̂m1+(1−p̂m1)λ̂m1

and γ̂m2 = p̂m2θ̂m2 + (1− p̂m2)λ̂m2 are the convex combinations of the posterior esti-

mates obtained through the MCMC sampling. Thus, the global average probability

of a correct prediction for our model may be defined as

p̄ =
1

M

M
∑

m=1

∏

i∈∆m

pi,m
δim , (4.12)

where δim denotes the Kronecker’s delta, with δim = 1 if the observed result at the

m-th match is i, i ∈ ∆m. This quantity serves as a global measure of performance

for comparing the predictive accuracy between the posterior match probabilities pro-

vided by the model and those obtained from the bookmakers’ odds. As reported in

Table 4.3, our model is very close to the bookmakers’ probabilities (Shin’s method

and basic procedure). At a first glance, one may be tempted to say that according

to this measure our model does not improve the bookmakers’ probabilities. However,

as explained below, this index is only an averaged measure of the predictive power,

which does not take into account the possible profits for the single matches.

According to the second definition, beating the bookmaker means earn money

through our model’s probabilities. In what follows we drop the bookmaker’s sub-

scripts s for easing the notation. Let us introduce the expected profit at the m-th

game under our model as

Exp-profitm =
∑

i∈∆m

pi,m/oi,m. (4.13)
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The betting strategy A is the following: for each match, bet one unit on the three-

way match outcome with the highest expected return Exp-profiti,m, by solving the

simple expression

max
i∈∆m

{pi,m/oi,m}.

In this way we are uniformly betting one unit for each match. But we could need

something more sophisticated, because different matches may require different bets,

due for instance to their variability. Rue and Salvesen (2000) suggest to put different

amounts basing each bet on the match’s profit variability. Let Var-profitm denote

the variance of the profit for the match m. They found that the optimal bet for the

m-th game is given by

βi,m = max{0,Exp-profiti,m/Var-profiti,m}, (4.14)

where they choose to bet on that outcome i ∈ ∆m such that βi,mExp-profiti,m is

the greatest. We adopted both the strategies and the expected profits are reported

in Table 4 and 5. At a first glance, it is evident that betting with our posterior

model probabilities yields high positive returns for each league and each bookmaker;

conversely, if we bet with the betting odds probabilities we would always incur in a

sure loss. This is an empirical confirm for the performance of the model and suggests

that the measure p̄ alone does not mean necessarily nothing in terms of profitable

strategies. As a second consideration, strategy B yields higher profits than strategy

A.

4.5.2 Over/Under bets

The over/under (O/U) bets represent one the greatest source of the football betting.

An O/U bet is a wager consisting in the prediction of a specific game’s statistic.

In football this is often translated in guessing whether the sum score of a match is

lower or greater than two. The greatest appeal of a direct model is predicting all

the games’ features connected with the number of goals; in this case, the posterior

probabilities for the total number of goals Ym1+Ym2 are: pOver,m = P (Ym1+Ym2 > 2)

and pUnder,m = P (Ym1 + Ym2 ≤ 2). From probability theory, we know that

Ym1 + Ym2 ∼ Poisson(γm1 + γm2),
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Table 4.4: Strategy A: expected profits (%/100) for the seven considered bookmakers,

for each of the top-four European leagues.

Bet365 Bwin Interwetten Ladbrokes Sportingbet VC Bet W. Hill

Bundesliga

Model 0.180 0.157 0.135 0.148 0.226 0.169 0.177

Shin -0.032 -0.032 -0.038 -0.046 -0.008 -0.034 -0.022

Basic -0.047 -0.050 -0.054 -0.061 -0.019 -0.047 -0.039

Premier League

Model 0.242 0.188 0.157 0.198 0.247 0.216 0.248

Shin -0.011 -0.026 -0.043 -0.029 -0.007 -0.036 -0.011

Basic -0.048 -0.050 -0.055 -0.059 -0.020 -0.046 -0.036

La Liga

Model 0.100 0.085 0.07 0.073 0.138 0.095 0.104

Shin -0.032 -0.035 -0.0335 -0.0386 -0.006 -0.034 -0.026

Basic -0.028 -0.048 -0.055 -0.046 -0.020 -0.044 -0.027

Serie A

Model 0.180 0.154 0.088 0.14 0.228 0.156 0.199

Shin -0.028 -0.037 -0.051 -0.039 -0.003 -0.027 -0.024

Basic -0.048 -0.050 -0.074 -0.060 -0.020 -0.046 -0.040

Table 4.5: Strategy B: expected profits (%/100) for the seven considered bookmakers,

for each of the top-four European leagues. The value for the variance profit is set to

one.

Bet365 Bwin Interwetten Ladbrokes Sportingbet VC Bet W. Hill

Bundesliga

Model 0.209 0.184 0.164 0.175 0.266 0.199 0.200

Shin -0.028 -0.027 -0.035 -0.043 -0.005 -0.031 -0.018

Basic -0.047 -0.050 -0.054 -0.060 -0.019 -0.046 -0.038

Premier League

Model 0.295 0.232 0.206 0.244 0.300 0.266 0.299

Shin -0.007 -0.022 -0.041 -0.026 -0.004 -0.034 -0.007

Basic -0.028 -0.048 -0.055 -0.046 -0.020 -0.044 -0.027

La Liga

Model 0.127 0.111 0.113 0.092 0.162 0.120 0.121

Shin -0.028 -0.032 -0.028 -0.034 -0.003 -0.031 -0.024

Basic -0.048 -0.049 -0.055 -0.058 -0.020 -0.046 -0.036

Serie A

Model 0.241 0.197 0.136 0.189 0.287 0.200 0.253

Shin -0.023 -0.034 -0.046 -0.034 0.001 -0.022 -0.020

Basic -0.048 -0.050 -0.074 -0.060 -0.020 -0.046 -0.040
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Table 4.6: O/U bets: average correct probability p̄ obtained through our model

and through the basic probabilities (we take here the average of the seven considered

bookmakers). In the last column, the expected profits (%/100). Greater p̄ values

indicate better predictive accuracy.

Model Basic Profit

Bundesliga 0.514 0.512 0.045

Premier League 0.513 0.514 0.0498

La Liga 0.532 0.533 0.039

Serie A 0.517 0.521 0.065

where γm1, γm2 are the convex parameters in (4.5). As in the three-way process,

we may compute the average correct probability for these bets. Table 4.6 reports

the average correct probability measure p̄ for the O/U bets. The model predictions

and the bookmakers predictions are very close, around 0.5. As evident from the last

column, here the profits —playing with the analogous Strategy A of the tree-way

process— are positive but lower than the three-way process profits. These results

suggest a slightly good ability to predict the total number of goals, being this predic-

tion comparable to no much more than flipping a coin. Still, even if the p̄ measure

under the model is not often greater than the same measure for the bookmakers basic

probabilities, the expected profit are always positive. Here also, it is worth keep in

mind that if we played with the bookmakers probabilities, we would incur in a sure

loss.

Figure 4.12 displays a comparison between the O/U probabilities implied by the

bookmakers and by our model. For Premier League and Serie A the model tends

to predict greater probabilities for the Under, while for Bundesliga and La Liga the

model and the bookmakers tend to be closer. Together with the expected profits in

Table 4.6, these graphs seem to provide an empirical suggestion that the expected

profits are greater in correspondence of higher Under probabilities provided by the

model.
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PL: Under (<2.5)

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6

Model prob. under

B
o

o
k
m

a
k
e

rs
 p

ro
b
.u

n
d

e
r

Liga: Under (<2.5)

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.2

0.3

0.4

0.5

0.6

0.3 0.4 0.5 0.6 0.7

Model prob. under

B
o

o
k
m

a
k
e

rs
 p

ro
b
.u

n
d

e
r

SerieA: Under (<2.5)

Figure 4.12: Model and bookmakers’ O/U probabilities for each of the top-four Eu-

ropean leagues
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4.6 Discussion and further work

We have proposed a new hierarchical Bayesian Poisson model in which the rates

are convex combinations of parameters accounting for two different sources of data:

the bookmakers’ betting odds and the historical match results. We transformed the

betting odds in precise probabilities and we worked out the bookmakers scoring rates

through the Skellam distribution. A wide graphical and numerical analysis for the

top-four European leagues has shown a good predictive accuracy for our model and

surprising results in terms of expected profits. These results confirm on one hand

that the information contained in the betting odds is relevant in terms of football

prediction; on the other hand, combining it with historical data allows for a natural

extension of the existing models for the football scores.
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Proof of Theorem 1

Due to distribution-constant definition, g(T (y)|θ) = g(T (y)) and then

p(θ|y) ∝ f(y|θ)π(θ|T (y))/g(T (y)|θ) ∝ f(y|θ)π(θ|T (y)).

Furthermore, π(θ|T (y)) ∝ g(T (y)|θ)π(θ) ∝ π(θ). �

Proof of Theorem 2

Proof. For simplicity of notation we denote with α the baseline prior πb(θ), with γ the

informative prior π(θ) and with β the mixture prior ϕ(θ) = ψm∗πb(θ) + (1 − ψm∗)π(θ).

Furthermore, we abbreviate the weight ψm∗ as ψ. Unless otherwise stated, the dependence

of the quantities introduced in Section 2.4 on the parameter θ ∈ R is here implicit. We

compute the negative second log-derivative for the mixture prior (2.17) in general terms as

Dϕ =− d2 log{ϕ(θ)}
dθ2

= −d
2 log{ψπb(θ) + (1− ψ)π(θ)}

dθ2
= (15)

= − d

dθ

[

ψα
′

+ (1− ψ)γ
′

ψα+ (1− ψ)γ

]

= (16)

=
(ψα

′

+ (1− ψ)γ
′

)2 − (ψα
′′

+ (1− ψ)γ
′′

)(ψα+ (1− ψ)γ)

(ψα+ (1− ψ)γ)2
. (17)

After some simple expansions we can rewrite (17) and apply some minorations:

Dϕ =
ψ2[(α

′

)2 − α
′′

α] + (1− ψ)2(γ
′

)2 + 2ψ(1− ψ)γ
′

α
′

(ψα+ (1− ψ)γ)2
−

−ψ(1− ψ)α
′′

γ + ψ(1− ψ)αγ
′′

+ (1− ψ)2γγ
′′

(ψα+ (1− ψ)γ)2
≤

≤
[

(α
′

)2 − α
′′

α

α2

]

+
(1− ψ)2(γ

′

)2 − (1− ψ)2γγ
′′

(1− ψ)2γ2
+
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+
2ψ(1− ψ)γ

′

α
′ − ψ(1− ψ)α

′′

γ − ψ(1− ψ)αγ
′′

ψ2α2
=

= Dα +K1, (18)

where K1 collects all the terms which do not enter in Dα. Analogously, we can find

another minoration:

Dϕ ≤
[

(γ
′

)2 − γ
′′

γ

γ2

]

+
ψ2(α

′

)2 − ψ2αα
′′

+ 2ψ(1− ψ)γ
′

α
′

ψ2α2
−

−ψ(1− ψ)α
′′

γ + ψ(1− ψ)αγ
′′

ψ2α2
=

= Dγ+K2 . (19)

From (18) and (19) it stems that

K1 −K2 =

[

(γ
′

)2 − γ
′′

γ

γ2

]

−
[

(α
′

)2 − α
′′

α

α2

]

= Dγ −Dα,

with Dγ −Dα > 0 for assumption (see Table 2.1). In what follows we abbreviate Dϕ

as D. Hence we have found the following conditions







A D ≤ Dα +K1

B D ≤ Dγ +K2

(20)

Condition B implies D ≤ Dγ + K2 + (K1 − K2) = Dγ + K1 and yields the further

condition

C D ≤ Dγ +K1.

Thus, we may collect the three conditions already found



















A D ≤ Dα +K1

B D ≤ Dγ +K2

C D ≤ Dγ +K1

(21)

Now we may distinguish three separate cases which satisfy the condition K1 −K2 > 0:

(a) K1 > K2 > 0
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We use conditions B,C







B D ≤ Dγ +K2

C D ≤ Dγ +K1

→







2D ≤ 2Dγ + 2K2

D ≤ Dγ + 2K1

→







D ≤ Dγ + 2(K2 −K1) ≤ Dγ

−
(22)

and we conclude that D ≤ Dγ .

(b) K1 > 0, K2 < 0

By applying condition B , it follows D ≤ Dγ .

(c) K1 < 0, K2 < 0

By applying condition B or C , it follows D ≤ Dγ .

We have proved that for any possible sign of K1, K2, D ≤ Dγ . By definition of effective

sample size from Morita et al. (2008) we know that

ESS(ϕ(θ)) = Argmin
m∈N

{δ(m, θ̄, ϕ, qm)} =

= Argmin
m∈N

{|D −Dqm(θ̄)|},

evaluated in the plug-in estimate θ̄ = Eπ(θ). From Table 2.1 we also know that the

observed information of the baseline posterior Dqm is a linear function of the sample size

m and is increasing:
dDqm

dm
> 0, ∀m ∈ N.

Thus we may conclude that from D ≤ Dπ it follows:

ESS(ϕ(θ)) = Argmin
m∈N

{|Dϕ(θ̄)−Dqm(θ|y)(θ̄)|} ≤

≤ Argmin
m∈N

{|D −Dqm(θ̄)|} = ESS(π(θ)) . �
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Logistic regression for phase I trial

Algorithm for computing the ESS (Morita et al., 2008)

• According to the definitions in (2.22), we compute the following quantities:

Dπ,1 = (σ̃2µ)
−1, Dπ,2 = (σ̃2β)

−1.

• We need to compute Dq,1(m,θ, Xm,ym) =
∑m

i=1 π(Xi,θ){1− π(Xi,θ)},
Dq,2(m,θ, Xm,ym) =

∑m
i=1X

2
i π(Xi, θ){1− π(Xi, θ)}.

• It turns out that
∫

Dqm,jf(ym)dym —where f(ym) is the likelihood (2.43) evaluated

in correspondence of fixed values for θ and X— cannot be computed analytically

and need to be computed through Monte Carlo simulation. Before of proceeding, let

us notice that Dq,1(m,θ, Xm,ym) and Dq,2(m,θ, Xm,ym) depend on Xm but not on

ym, and this simplifies the simulation procedure. We may replace them respectively

with the new notations Dq,1(m,θ, Xm) and Dq,2(m,θ, Xm).

• Assuming a uniform distribution for the doses, we draw X
(t)
1 , ..., X

(t)
6 independently

from {X1, ..., X6} with probability 1/6 each, for t = 1, ..., 100000.

• Use the Monte Carlo average T−1
∑T

t=1Dq,j(m,θ, Xm) in place of
∫

Dqm,jf(ym)dym,

for j = 1, 2.

• Compute δ1(mµ, θ̄, πµ, qmµ), δ2(mβ , θ̄, πβ , qmβ
) and δ(m, θ̄, π, qm).

• ESS(π(µ)), ESS(π(β)) and ESS(π(θ)) are the interpolated values of the sample

sizes mµ,mβ ,m minimizing δ1, δ2 and δ respectively.
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Stan code for the MIX model

data{

// Dimensions

int<lower=0> N; // Number of players

int<lower=1> J; // Number of positions

int<lower=1> T; // Number of matches

int<lower=1> K; // Number of team clusters

int<lower=1> D; // Number of mixture components

// Variables

vector[T] y[N]; // Outcome

int<lower=1,upper=J> position[N]; // Position

int<lower=1,upper=K> team[N]; // Team cluster

int<lower=1,upper=K> opp_team[N, T-1]; // Opponent team cluster for each game

int<lower=0,upper=1> home[N, T-1]; // Home/Away variable (0=Away, 1=Home)

vector[N] price_std; // Initial price for every player

real avg_rating[N, T-1]; // Lagged average ratings

// Out-of-sample stuff

int<lower=1> T_twiddle; // Number of games

int<lower=0,upper=1> home_twiddle[N, T_twiddle]; // Home/Away

int<lower=1,upper=K> opp_team_twiddle[N, T_twiddle]; // Opponent team cluster

}

parameters {

// For non-centered parameterizations
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vector[N] alpha_raw; // Player intercepts

vector[K] gamma_raw; // Team-cluster incercepts

vector[K] beta_raw; // Opponent team-cluster intercepts

vector[J] rho_raw; // Position intercepts

vector[J] lambda; // Coefs on lagged average rating

vector[J] delta; // Coefs on standardized price

real alpha0; // Global intercept

real theta; // Coef on home/away indicator

// Scale parameters

real<lower=0> sigma_y;

real<lower=0> sigma_alpha;

real<lower=0> sigma_beta;

real<lower=0> sigma_gamma;

real<lower=0> sigma_rho;

// Parameters in logit submodel

vector[J] zeta;

real pzero;

}

transformed parameters{

// Non-centered parameterizations

vector[N] alpha = alpha_raw * sigma_alpha;

vector[K] beta = beta_raw * sigma_beta;

vector[K] gamma = gamma_raw * sigma_gamma;

vector[J] rho = rho_raw * sigma_rho;

vector[T] eta[N];

for (n in 1:N) {

eta[n, 1] = 0; // just needs some value

for (l in 2:T) {

eta[n,l] =

alpha0
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+ alpha[n]

+ delta[position[n]] * price_std[n]

+ (gamma[team[n]] + beta[opp_team[n, l-1]])

+ rho[position[n]]

+ theta * home[n, l-1]

+ lambda[position[n]] * avg_rating[n, l-1];

}

}

}

model{

// Mixture

for (n in 1:N) {

for (l in 2:T) {

real pi_eta = pzero + zeta[position[n]] * avg_rating[n, l-1];

target +=

log_mix(

inv_logit(pi_eta),

normal_lpdf(y[n,l] | eta[n,l], sigma_y),

normal_lpdf(y[n,l] | 0, 0.1) // 0

);

}

}

// Log-priors

target += normal_lpdf(alpha0 | 0, 5);

target +=

normal_lpdf(alpha_raw | 0, 1)

+ normal_lpdf(sigma_alpha | 0, 2.5);

target +=

normal_lpdf(rho_raw | 0, 1)

+ normal_lpdf(sigma_rho | 0, 2.5);

target +=

normal_lpdf(beta_raw | 0, 1)

+ normal_lpdf(sigma_beta | 0, 2.5);

121



122 Appendix B

target +=

normal_lpdf(gamma_raw | 0, 1)

+ normal_lpdf(sigma_gamma | 0, 2.5);

target += normal_lpdf(theta | 0, 2.5);

target += normal_lpdf(lambda | 0, 1);

target += normal_lpdf(delta | 0, 5);

target += cauchy_lpdf(sigma_y | 0, 5);

target += normal_lpdf(zeta | 0, 1);

target += normal_lpdf(pzero | 0, 2.5);

}

generated quantities{

vector[T] y_rep[N]; // In-sample replications/predictions

vector[T-1] pi_eta_rep[N];

int<lower=0, upper=1> V[N, T-1];

vector[T_twiddle] eta_twiddle[N];

real y_twiddle[N, T_twiddle]; // Out-of-sample predictions

vector[T_twiddle] pi_eta_twiddle[N];

int<lower=0, upper=1> V_twiddle[N, T_twiddle];

real avg_rating_twiddle[N, T_twiddle];

avg_rating_twiddle[,1] = avg_rating[,T-1];

y_twiddle[,1] = y[,T];

y_rep[,1] = y[,1];

for (n in 1:N) {

for (l in 2:T) {

pi_eta_rep[n, l-1] =

pzero + zeta[position[n]] * avg_rating[n,l-1];

V[n, l-1] = bernoulli_logit_rng(pi_eta_rep[n,l-1]);

y_rep[n,l] = (V[n, l-1] == 1) ? normal_rng(eta[n,l], sigma_y) : 0;

}
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}

for (n in 1:N) {

pi_eta_twiddle[n,1] =

pzero+ zeta[position[n]] * avg_rating_twiddle[n,1];

V_twiddle[n,1] = bernoulli_logit_rng(pi_eta_twiddle[n,1]);

eta_twiddle[n,1] =

alpha0

+ alpha[n]

+ (gamma[team[n]]+beta[opp_team_twiddle[n,1]])

+ delta[position[n]]*price_std[n]

+ theta * home_twiddle[n,1]+rho[position[n]]

+ lambda[position[n]] * avg_rating[n,T-1];

}

for (n in 1:N) {

for (l in 2:T_twiddle) {

avg_rating_twiddle[n,l] =

sum(y_twiddle[n,1:(l-1)]) / size(y_twiddle[n,1:(l-1)]);

pi_eta_twiddle[n,l] =

pzero+ zeta[position[n]] * avg_rating_twiddle[n,l];

V_twiddle[n,l] = bernoulli_logit_rng(pi_eta_twiddle[n,l]);

eta_twiddle[n,l] =

alpha0

+ alpha[n]

+(beta[opp_team_twiddle[n,l]]+gamma[team[n]])

+ delta[position[n]]*price_std[n]

+ theta * home_twiddle[n,l]+rho[position[n]]

+ lambda[position[n]] * avg_rating_twiddle[n,l-1];

y_twiddle[n,l] =

(V_twiddle[n,l] == 1) ? normal_rng(eta_twiddle[n,l], sigma_y ) : 0;

}

}}
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JAGS code for German Bundesliga

mod.BundesLiga.mixture.hier.B<-"model{

# Likelihood:

for (n in 1:ngames_train){

for (s in 1:agenzie){

theta1_bm[n,s] ~dnorm(lambda1_book[n], tau1_book[n])T(0,)

theta2_bm[n,s] ~dnorm(lambda2_book[n], tau2_book[n])T(0,)

}

theta1_hat[n]<-pClust1[n,1]*thetaofClust[n,1,1] +

pClust1[n,2]*thetaofClust[n,1,2]

theta2_hat[n]<-pClust2[n,1]*thetaofClust[n,2,1] +

pClust2[n,2]*thetaofClust[n,2,2]

score1[n] ~ dpois(theta1_hat[n])

score2[n] ~ dpois(theta2_hat[n])

# Average Scoring intensities (accounting for mixing components)

log(thetaofClust[n,1,1])<-mu+att[team1[n], season[n]]+def[team2[n], season[n]]

log(thetaofClust[n,1,2])<-log(lambda1_book[n])

log(thetaofClust[n,2,1])<-att[team2[n], season[n]]+def[team1[n], season[n]]

125



126 Appendix C

log(thetaofClust[n,2,2])<-log(lambda2_book[n])

#priors for lambda1_book, lambda2_book

lambda1_book[n]~ dnorm(theta1_bm_mean[n], 0.01)T(0,)

lambda2_book[n]~dnorm(theta2_bm_mean[n], 0.01)T(0,)

tau1_book[n]<-pow(sigma1.y[n],-2)

tau2_book[n]<-pow(sigma2.y[n],-2)

sigma1.y[n]~dnorm(0, alpha)T(0,)

sigma2.y[n]~dnorm(0, beta)T(0,)

}

# Predictive distribution for the number of goals scored

for (n in 1:ngames_test){

for (s in 1:agenzie){

theta1_bm_prev[n,s] ~dnorm(lambda1_book_prev[n], tau1_book[n])T(0,)

theta2_bm_prev[n,s] ~dnorm(lambda2_book_prev[n], tau2_book[n])T(0,)

}

theta1_hat_prev[n]<-pClust1_prev[n,1]*thetaofClust_prev[n,1,1]+

pClust1_prev[n,2]*thetaofClust_prev[n,1,2]

theta2_hat_prev[n]<-pClust2_prev[n,1]*thetaofClust_prev[n,2,1]+

pClust2_prev[n,2]*thetaofClust_prev[n,2,2]

score1_prev[n] ~ dpois(theta1_hat_prev[n])

score2_prev[n] ~ dpois(theta2_hat_prev[n])
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pClust1_prev[n,1:2] ~ ddirch(onesRepNclust_prev[1:2])

pClust2_prev[n,1:2] ~ ddirch(onesRepNclust_prev[1:2])

log(thetaofClust_prev[n,1,1])<-mu+att[team1_prev[n], season_prev[n]]+

def[team2_prev[n], season_prev[n]]

log(thetaofClust_prev[n,1,2])<-log(lambda1_book_prev[n])

log(thetaofClust_prev[n,2,1])<-att[team2_prev[n], season_prev[n]]+

def[team1_prev[n], season_prev[n]]

log(thetaofClust_prev[n,2,2])<-log(lambda2_book_prev[n])

#priors for lambda1_book, lambda2_book

lambda1_book_prev[n]~dnorm(theta1_bm_mean_prev[n], 0.01)T(0,)

lambda2_book_prev[n]~dnorm(theta2_bm_mean_prev[n], 0.01)T(0,)

}

# Prior: MODEL FOR HYPERPARAMETERS

for (t in 1:nteams){

att.star[t,1]~ dnorm(mu.att, tau.att)

def.star[t,1]~ dnorm(mu.def, tau.def)

att[t,1] <- att.star[t,1] - mean(att.star[,1])

def[t,1] <- def.star[t,1] - mean(def.star[,1])

for (h in 2:T){

att.star[t,h] ~ dnorm(mu.att+att.star[t,h-1],tau.att)

def.star[t,h] ~ dnorm(mu.def+def.star[t,h-1],tau.def)

att[t,h] <- att.star[t,h] - mean(att.star[,h])

def[t,h] <- def.star[t,h] - mean(def.star[,h])

}
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}

# priors on the random effects

mu.att ~ dnorm(0,0.0001)

mu.def ~ dnorm(0,0.0001)

tau.att ~ dgamma(.01,.01)

tau.def ~ dgamma(.01,.01)

mu~ dnorm(0,0.0001)

alpha~dunif(0,10)

beta~dunif(0,10)

}"
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