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Some topics in literature

1. Probabilistic modeling and simulations of tennis matches

2. Analysis of play and features of tennis matches

3. Predictive models for outcomes of tennis matches

4. Betting

5. Men-Women and/or Top-Medium players differences

6. Performance analysis

7. Efficient tournaments management

8. Ranking and scoring systems

9. Physiological aspects and injuries prevention

10. Equipment performance (rackets, balls, hawk-eye, etc..)

11. Frauds detection

2 / 48



2. Analysis of play

2.1 Are all points (games, sets) equally important?

2.2 Are points i.i.d?

2.3 Does the prob. of being broken back increase after a break?

2.4 Is it an advantage to serve first in a set?

2.5 Is it true that the 7th game in a set is the most important?

2.6 Is there a home advantage in tennis?

2.7 How “quality” of players can be defined?

2.8 It is true that a player is as good as his/her second service?

2.9 Do players have an efficient service strategy?

2.10 Is it true that players play safer at important points?

2.11 Do players take more risks when they are in a winning mood?

2.12 Are top players more stable than others?

2.13 Are new balls an advantage for the server?
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Klaassen and Magnus (2014). Analyzing Wimbledon. The Power
of Statistics, Oxford University Press
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The tennis scoring system

� A tennis match is composed of sets, games and points.

� match: won by the player who first wins 2 sets in a ”best of
three” match (o 3 in a ”best of five” match)

� set: a sequence of games played with service alternating
between games. To win a set, a player must win at least 6
games, with a margin of at least 2 games over the opponent.
- advantage set: at 6-6 the set continues until a player wins
two consecutive games;
- tie-break set: a seven-point game concludes the set.

� game: a sequence of points played with the same player at
service. To win a game a player must win at least 4 points,
with a margin of at least 2 points over the opponent.

� points: ”15”, ”30”, ”40” and ”game”.

� The 40-40 score is called “deuce”. After a deuce the game is
won by the player who first wins two consecutive points.

� The first point after a deuce is called “advantage”.
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1. Probabilistic tennis

� Tennis scoring can be described using techniques based on
counting paths, binomial theorem, Markov Chains theory,
backward and forward recursions (Newton and Keller, 2005;
Newton and Aslam, 2009; Barnett and Brown, 2012).

� Consider two players A and B.

pi = Prob(Player i wins a point at service) i = A,B

� Under the i.i.d. assumption the probability for a player of
winning a game at service is

gi = P(Player wins a game) =
p4i (−8p3i + 28p2i − 34pi + 15)

p2i + (1− pi )2
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1. Probability of winning a game (gi)
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� p = 0.5 implies g = 0.5
� p = 0.6 implies g = 0.73, and p = 0.7 implies g = 0.90.
� Magnification effect: for p > 0.5, g > p: an advantage at

point level leads to a bigger advantage at game level.
� S-shaped curve: the magnification effect is large when p is

close to 0.5 and small when p is close to 1.
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1. Probability of winning a set (si)
� From gi , using recursive formulas, we can obtain:

si = P(Player i wins a set) i = A,B

� For si we need both pA and pB (we need gA and gB).
Each couple of (pA, pB) leads to a different probability si .

� Two new parameters:

δ = pA − pB , γ = pA + pB

� pA depends on how well A serves (servA) and on how well B
returns (recB )

pA = servA − recB , pB = servB − recA

and this implies

δ = pA − pB = (servA + recA)− (servB + recB)

γ = pA + pB = (servA − recA)− (servB − recB)
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1. Probability of winning a set (si)

� δ = pA − pB = quality difference between the two players

� γ = pA + pB = sum of serve-return difference for both players

� Two main advantages:
- pA and pB are related to each other; δ and γ are much less
related.
- sA (which is what interests us here) depends primarily on δ.
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1. Probability of winning a set (si)

� Consider si as a function of δ = pA − pB and γ = pA + pB
(figures from Klaassen and Magnus, 2014)

� First figure shows si at the beginning of the set as a function of δ
for different values of γ , (from 0.8 to 1.6).
The collection of all curves for 0.8 < γ < 1.6 gives the thickness of
the curve.

� Is this also true during a set? At equal scores, the answer is yes.
At unequal scores, however, the dependence on γ is stronger, and
the two most extreme cases occur at 5-4 and 4-5.
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1. Probability of winning a match (mi)

� From si , by recursive formulas, we can find mi , the probability
that player i wins the match (i = A,B).

� Probability of winning a match best-of-five (dark) versus
best-of-three (light), at the beginning of the match

� The best-of-five curve is always above the best-of-three curve
when pA > pB (and below when pA < pB). It is another
example of the magnification effect.
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1. Probability of winning a match (mi)

� At equal scores:
mi depends almost entirely on δ and only marginally on γ.
Dependence on γ increases towards the end of the match.

� At unequal scores:
dependence on γ is much stronger.
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1. Probability of winning a match (mi)

� Summarizing, the probability of winning a match is:

mi = w(pA, pB , tournament, current score, current server)

� mi changes at different scores (also for pA and pB constant)
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1. Probabilities estimation

� Usually, pi is estimated as the relative frequency of winning
service points in a given sample.

� gi , si and mi (i = A,B) can be estimated:
- as the relative frequency, with respect to games, sets and
matches or
- starting from p̂A and p̂B and using previous formulas. In this
case particular attention should be payed to the magnification
effect.

� mi can also be estimated using bookmakers odds after
suitable transformations.

� Estimation of pi requires point-to-point data. Estimation of
gi , si and mi can be based on match data.
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2. Analysis of play

2.1 Are all points (games, sets) equally important?

2.2 Are points i.i.d?

2.3 Does the prob. of being broken back increase after a break?

2.4 Is it an advantage to serve first in a set?

2.5 Is it true that the 7th game in a set is the most important?

2.6 Is there a home advantage in tennis?

2.7 How “quality” of players can be defined?

2.8 It is true that a player is as good as his/her second service?

2.9 Do players have an efficient service strategy?

2.10 Is it true that players play safer at important points?

2.11 Do players take more risks when they are in a winning mood?

2.12 Are top players more stable than others?

2.13 Are new balls an advantage for the server?
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2.1. Importance of points in tennis

� Intuitively, a point is important if winning or losing that point
has a large impact on winning the game, the set, the match.

� In a game, for players A and B consider the score (a, b).
Scores a and b can be 0, 15, 30, 40, and Advantage (Ad) but,
for convenience, we count them as 0, 1, 2, 3, 4(=Adv). Define

gi (a, b) = P (i wins the game from point (a,b) at service)

� Morris (1977) defines the importance of point (a, b) in a
game as

imppg (a, b) = gi (a + 1, b)− gi (a, b + 1)

This is Prob(server (i) wins the game | wins the point) -
Prob(server (i) wins the game | loses the point).

� It can be shown that the importance of point (a, b) is the
same for A and B .
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2.1. Important points in a game (imppg(a, b))

� To quantify the importance, we need pi the probability that
player i wins the point at service.

� We use pA = pB = 64% which is the average value in the
2010 grand slams for men (Klaassen and Magnus, 2014).

Point score B (receiver)
0 15 30 40 Adv

0 23 33 40 31 –
15 17 30 45 49 –

Point score A 30 10 21 43 76 –
(server) 40 3 9 24 43 76

Adv – – – 24 –

� For p > 0.5, 30− 40 (break-point) is more important than
40− 30 (game-point).
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2.1. Important games in a set (impgs(a, b))

� The importance of the game(a,b) is defined as

impgs(a, b) = si (a + 1, b)− si(a, b + 1) (1)

� Assuming pA = pB = 64% implies gA = gB = 81.3%

� For a tie-break set we have:

Game score B
0 1 2 3 4 5 6

Game score A

0 30 30 18 14 3 1 –
1 30 33 33 17 12 1 –
2 30 33 37 37 14 8 –
3 14 32 37 42 42 9 –
4 10 12 36 42 50 50 –
5 1 6 8 41 50 50 50
6 – – – – – 50 100

18 / 48



2.1. Important sets in a match (impsm(a, b))

� To complete the three-step analysis (point-game, game-set,
set-match), we consider the importance of a set in a match.

� The importance of the set(a,b) is defined as

impsm(a, b) = mi (a + 1, b)−mi (a, b + 1) (2)

� Assume A and B have equal strength, so that mi = 50% for
both. In a best-of-five match the importance impsm is

Set score B
0 1 2

Set score A
0 38 38 25
1 38 50 50
2 25 50 100
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2.1. Important points in a match (imppm(a, b))
� Previous definitions (imppg , impgs and impsm), allow us to

write the importance of a point in a match (imppm) as

imp = imppm = imppg × impgs × impsm

Figura: Importance profile of the match: Djokovic-Nadal, Australian
Open 2012. Final score: 5-7, 6-4, 6-2, 6-7, 7-5. (from Klaassen and
Magnus, 2014)
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2.2. Are points in tennis i.i.d. distributed?

� Independence: pi does not depend on what has happened
previously (previous points).

� Identical distribution: pi is not affected by the score, by the
“state” of the match or by other conditions.

� Only few works consider specifically the i.i.d issue (Klaassen
and Magnus, 2001; Pollard and Pollard, 2012; Matteazzi and
Lisi, 2017)

� Other related issues, i.e the effect of:
break points (Knight and O’Donoghue, 2012);
tie-break points (Pollard, 1983);
other “special” points in a match (Pollard, 2004; Klaassen and
Magnus, 2003; O’Donoghue and Ingram, 2001; Morris, 1977)
momentum (Jackson and Mosurski, 1997)
winning/losing mood (Terry and Munro, 2008; Klaassen and
Magnus, 2014).
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2.2. Are points in tennis i.i.d. distributed?

� Klaassen and Magnus (2001) test the iid hypothesis by means
of a dynamic model for binary panel data with random effects.

� Let yi = 1 if player A wins the i -th service point (against
player B) and 0 otherwise. The K-M model is

yi = Q + Di−1 + εi (3)

where:
- Q is a “quality” component, expressing the difference
between A and B;
- Di is a dynamic term depending on all match information
(of both players) up to point i − 1;
- εi is a random binary term.

� If points were iid, then such match information would be
useless in predicting yi .
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2.2. Are points in tennis i.i.d. distributed?

� K-M estimate the model (by FGLS) on a sample of 86, 000
points (57, 000 for men+29, 000 for women) played at
Wimbledon, and find that:
- winning the previous point has a positive effect on winning
the current point;
- it is more difficult for the player at service to win
“important” points than less important points;
- the weaker a player is, the stronger are these effects.

� K-M conclude that points are not i.i.d., but they also observe
that deviations from i.i.d are small and hence the i.i.d.
hypothesis provides a good approximation in many cases.
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2.2. Are points in tennis i.i.d. distributed?

� Pollard and Pollard (2012) use several measures to check if
(real) points at service are consistent with the i.i.d.
hypothesis.

� P-P analyse the probability that a player wins a point at
service:
(a) if he is ahead, equal or behind in the game;
(b) if he has won or lost the previous point;
(c) given various combinations of (a) and (b);
(d) given the importance of the point.

� They also consider:
(e) the number of games won at service;
(f) the duration (number of points) of a game;
(g) the number of wins and losses.
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2.2. Are points in tennis i.i.d. distributed?

� P-P test if the observed relative frequencies are consistent
with those expected under the hypothesis of independent
points.

� Tests are based on Chi-Squared with suitable df for (a)-(f)
and on Wald-Wolfowitz two samples run test for (g)

� Tests are applied to 1172 points played by Nadal against 11
top players in 2011.

� P-P find that most tests accept the independence assumption,
but they also find that Nadal can lift (i) when returning and
being ahead in the game and (ii) when serving and having lost
the previous point.

� P-P conclude that there are evidences of “non independence”.
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2.2. Are points in tennis i.i.d. distributed?

� Matteazzi and Lisi (2017) identify several “states” of the
match where deviations from i.i.d can occur; they are:
(a) game-points (break-, set- and match-points);
(b) tie-break points;
(c) various combinations of (a) and (b), i.e break-points and
set-points;
(d) the previous point.

� M-L test the i.i.d hypothesis vs specific deviations from i.i.d.,
comparing actual relative frequencies with those expected
under the iid hypothesis by means of:
- Logistic regression models (parametric)
- Exact binomial tests (parametric)
- Proportion tests (nonparametric)
- Monte Carlo tests (nonparametric)
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2.2. Are points in tennis i.i.d. distributed?

� Unlike previous works, analyses are run both for men’s single
and women’s single matches and for different kinds of surfaces
and championships.

� Men: 15 head-to-head match sequences, involving 150
matches, 21 players (high- and medium-ranked) and 26,196
points.

� Women: 8 head-to-head match sequences, involving 64
matches, 13 players (high- and medium-ranked) and 8,902
points.

� M-L find that i.i.d. is occasionally rejected but there is no
clear evidence of significant deviations from the i.i.d.
hypothesis.
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2.2. Are points in tennis i.i.d. distributed?

� Overall, results are mixed: sometimes authors find evidence of
non i.i.d. points, sometimes the evidence is very weak

� Since it is not always easy to retrieve exhaustive datasets,
results may depend on the specific data considered (only a
player or a couple of players, only a surface, only a
tournament, etc...)

� However, we can conclude that, even if there is some evidence
that points are not i.i.d., among professional players this
assumption still provides a good approximation.
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2.3. Breaks and re-breaks
� A break occurs when the server does not win his/her own

service game.
Some commentators believe that there is a higher probability
of being broken back after a break. Is this statement
supported by data?

� If the hypothesis is true, then the pi decreases after a break in
the previous game (in the same set).

� Percentage of won points at service after winning or losing the
previous game for a sample of matches played at Wimbledon:

Men Women

All points 64.4 56.1
After break 65.8 57.9
After no-break 64.1 54.9

� Translating these % from points to games, the probability of
winning a service game, when a break occurred in the previous
game, increases of 3.3% -points for men d 5.7% for women.
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2.3. Breaks and re-breaks

� It seems that the hypothesis is wrong.

� Can we believe it?

� The ’after break’ winning probability is dominated by good
players, who are able to react; while the ’after no-break’
winning probability, is dominated by weaker players.
The positive difference can be explained by quality
heterogeneity, even when a break in the previous game does
not matter at all. This is an example of sample selection bias.

� When a suitable correction for quality is considered (Klaassen
and Magnus ...) no effect is found for men. Instead such an
effect has been found for women

� Thus the hypothesis is rejected for men but accepted for
women.
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3. Predictive models for outcomes of tennis
matches

� Prediction of the outcome of the match between players A
and B.

� Two types of predictions:

3.1 before the match (using statistical models or odds from
bookmakers)

3.2 during the match (using statistical models)

� Good reviews are Kovalchik (2016), in the first case, and
Klaassen and Magnus (2014) in the second case.
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3.1. Before-match tennis outcomes forecasting

Most models fall into four categories (Kovalchik, 2016):

� Regression-based models: Boulier and Stekler (1999),
Clarke and Dyte (2000), Klaassen and Magnus (2003),
Glisdorf and Sukhatme (2008), del Corral and
Prieto-Rodŕıguez (2010), Lisi and Zanella (2016)

� Point-based models: (Newton and Keller, 2005), Barnett
and Clarke (2005), Knottenbelt et al. (2012), Spanias and
Knottenbelt (2012)

� Paired comparison models: McHale and Morton (2011),
FiveThirtyEight (2015)

� Bookmakers-based methods: Leitner et al. (2009)
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3.1. Before-match tennis outcomes forecasting

� mAB = probability that player A wins against player B, with A
the player with the higher ATP rank.

� Regression-based models directly model the probability that
player A wins the match.

� Most of the times they use:
� probit models, where: mAB = Φ(x′β)

with Φ c.d.f of a N(0, 1) and x a vector of predictors;

� logit (logistic) models, where: log
(

mAB

1−mAB

)
= x′β

� Models usually differ for the different predictors.
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3.1 Forecasting before-match tennis outcomes

� Point-based models: first, they specify pA and pB . Then,
usually under the IID assumption, use algebraic formulas to
obtain mAB .

� The difference among works consists in the way the basic
probability of winning a point or a game is computed.

� Newton and Keller (2005) consider an adjustment for
opponent ability and compute the frequency of points won at
service and returning in the previous 12 months.

� Barnett and Clarke (2005) propose a tournament-specific
adjustment
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3.1 Forecasting before-match tennis outcomes

� Paired comparison models: directly compare of two players
based on their features and past history (head-to-head
matches).

� McHale and Morton (2011) use the Bradley-Terry model and
assume that each player has a latent match win ability, αi . In
the B-T formulation, the odds that player A beats player B , is
αA/αB and the corresponding mAB is:

mAB =
αA

αA + αB

� McHale and Morton estimate the abilities αi maximizing the
(log-)likelihood of games won by player A (gA) and by player
B (gB ), with an exponential decay function to give more
weight to the more recent matches.
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3.1 Forecasting before-match tennis outcomes

� Bookmakers-based methods: they use bookmakers’ odds.
Odds can be regarded as expert opinions about the probability
that a player wins against a specific opponent.

� Leitner et al. (2009) propose to aggregate these expectations
into an overall prediction for match outcomes. They call this
model bookmakers consensus model (BCM).

� For a given match, let oAB,j (j=1,...,N) be N bookmakers
odds. These can be easily translated into winning
probabilities. Leitner et al. estimate the logit probability that
the favorite player wins as

logit(π̂AB) = N−1
N∑
j=1

logit(π̂AB,j). (4)
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3.1 Regressors

� Difference of rank (possibly transformed)

� Difference of ATP (WTA) points

� Age (or functions of the ages)

� Surface (clay, grass, hard, carpet)

� Home factor

� Bookmakers odds (possibly transformed)

� Previous results (head-to-head)

� Career (best ranking or top-ten)

� Momentum

� Tournament (Grand Slams, Masters 1000, ATP 500,...)

� Prizes
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3.2 Forecasting within-match tennis outcomes

� In the within-match modeling the prediction has to be
updated on a point-by-point basis throughout the match.

� Only few papers account for this kind of prediction (Klaassen
and Magnus, 2003; Easton and Uylangco, 2010), (Paulden,
2016)

� We have seen that, for the probability of winning a match we
have:

mi = w(pA, pB , tournament, current score, current server)

� Given these ’ingredients’, mi is computed recursively.

� Note that mi is different at different scores even if pA and pB
are constant
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3.2 Forecasting within-match tennis outcomes

� In the within-match modeling mi is updated on a
point-by-point basis during the match.

� Estimation of pA and pB : due to the magnification effect, p̂A
and p̂B differing just slightly from the true pA and pB can lead
to a completely different mi .

� Klaassen and Magnus (2003) suggest estimating pA and pB
indirectly starting from the match probability mi at the
beginning of the match

� Estimation of mi : using the rank of the two players or (better)
using betting odds.
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Within-match tennis outcomes forecasting

� At the beginning of the match mi depends only marginally on
pA + pB . Thus, the accuracy of its estimation is less crucial.

� Estimation of pA + pB : using ̂pA + pB = 2p̄, with p̄
tournament average (over the players) probability of winning a
point in a chosen year.

� Given (estimates of) mi and pA + pB , ’inverting’ function h
we obtain pA − pB

� Once we have pA − pB and pA + pB , we also have pA and pB
and we can compute mi at each score.
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Within-match tennis outcomes forecasting

Djokovic-Nadal, Australian Open 2012 (from Klaassen and Magnus, 2014)
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Tennis Data

� ATP website (www.atpworldtour.com)

� WTA website (www.wtatennis.com)

� OnCourt (www.oncourt.info/): a program and a tennis
database containing results on tennis match played since
1990. It includes both match data and point-to-point data (in
the paid version) and (some) odds.

� Tennis-Data (tennis-data.co.uk): a miner of match data and
odds

� Jeff Sackmann database
(https://github.com/JeffSackmann/): a large repository of
free match data and point-to-point tennis data
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