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Abstract. The evaluation of shooting performance and scoring probability of teams and players 

in different areas of the court is a relevant theme in basketball analytics. In this thesis, it is 

reproduced on different data an analysis taken from the paper Basketball spatial performance 

indicators and graphs by Paola Zuccolotto, Marica Manisera and Marco Sandri, that uses 

classification trees for obtaining a partition of the court in rectangles, which are maximally 

different with respect to shooting performances. Then, it is proposed a method based on random 

forests and gradient boosting for predicting shots results and scoring probabilities from every 

possible point of the court. The obtained results permit to create a unique court map for each 

player or team with free-shaped areas homogeneous with respect to predicted scoring 

probability within them. 

Keywords: basketball analytics, classification trees, random forests, gradient boosting, 

performance analysis 
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1. INTRODUCTION 

In the last few years, sports analytics have become a popular theme in the scientific community 

as reflected by the large number of publications about it. The main reason consists in the 

availability of several datasets, which permit to data scientists to extract insightful information 

and to find answers to complex problems. This thesis is focused on basketball. Generally, the 

main available datasets for this sport are the following: box scores, which contain basic 

descriptive statistics about players and teams that face each other in a match; play-by-play data, 

which describe in details relevant events happened during a match; tracking data, which are 

detected by technological devices, such as GPS sensors, in order to gather information about 

players’ movement. 

The first fundamental contributions in scientific literature about basketball analytics are the 

book Basketball On Paper: Rules And Tools For Performance Analysis (Oliver, 2004) and the 

paper A Starting Point for Analyzing Basketball Statistics (Kubatko et al., 2007). They introduce 

the concepts of pace and possession, in order to make teams’ performances comparable and 

they exploit them to define the so-called Four Factors, which are the main indicators for 

performance analysis. Then, several statistical researches were conducted in basketball aiming 

to analyse a huge variety of aspects of the game. Considering some examples of frequently 

analysed topics, it is possible to perform analyses about the prediction of the outcome of a game 

or a tournament (West 2008; Loeffelholz, Bednar, and Bauer 2009; Brown et al. 2010; Gupta 

2015; Lopez and Matthews 2015; Ruiz and Perez-Cruz 2015; Yuan et al. 2015; Manner 2016; 

Vračar et al., 2016), to analyse characteristics of players in order to define advanced roles 

(Alagappan, 2012; Bianchi et al., 2017), to investigate the aspects that differentiate successful 

and unsuccessful teams (Koh et al., 2011, 2012; García et al., 2013), to examine optimal game 

strategies (Annis, 2006; Zhang et al., 2013; Skinner and Goldman, 2017), to detect how players’ 

movement and passes network impact on games’ results and teams’ performances basing on 

tracking data (Passos et al., 2011; Lamas et al., 2011; Piette et al., 2011; Fewell et al., 2012; 

Travassos et al., 2012; Shortridge et al., 2014; Ante et al., 2014; Clemente et al., 2015; 

Gudmundsson and Horton, 2016; Metulini et al., 2017a,b; Bornn et al., 2017; Miller and Bornn, 

2017; Metulini et al., 2018; Wu and Bornn, 2018) and to analyse players’ shooting performance 

(Fearnhead and Taylor, 2011; Gabel and Redner, 2012; Schwarz, 2012; Özmen, 2012; Avugos 

et al., 2013; Page et al., 2013; Erčulj and Štrumbelj, 2015; Cervone et al., 2016; Deshpande and 

Jensen, 2016; Passos et al., 2016; Franks et al., 2016; Engelmann, 2017; Zuccolotto et al., 2018, 

Manisera, Sandri and Zuccolotto, 2019). 
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Between October 2019 and March 2020, I had the opportunity to do an internship at Big & 

Open Data Innovation Laboratory of University of Brescia, where the research project BDsports 

(Big Data analytics in sports) is developed, and I got in touch with basketball analytics by 

studying the book which can be considered the milestone of this thesis: Basketball Data Science 

with applications in R (Manisera and Zuccolotto, 2020). The realisation of my master thesis is 

my contribution to the project BDsports.  

This final dissertation deals with the theme of the evaluation of the shooting performance. The 

aim consists in investigating how the shooting performance of a player or a team varies in 

different areas of the court for underlining shooting patterns and favourite spots. In order to 

achieve this goal, I propose an approach with machine learning algorithms: classification trees, 

random forests and gradient boosting are used for the prediction of shot outcome and scoring 

probability given the position on the court from which the shot is attempted. The obtained 

results are exploited to produce graphical tools where the court is partitioned in areas, which 

are homogeneous with respect to shooting performance within them. The proposed tools can 

be very useful for the coaching staff to define game strategies, to develop specific training 

programmes and to compare players in scouting.   

This thesis is outlined in the following way: chapter 2 contains the methodological description 

of classification and regression trees, random forests and gradient boosting; in chapter 3, the 

empirical analyses, obtained results and graphical representations are presented; in chapter 4, 

the most important results are summarized and a possibility for future research is proposed.              
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2. METHODOLOGY 

In chapter 2, the machine learning algorithms applied in the empirical analyses are described 

from a methodological point of view. The following algorithms are illustrated: classification 

and regression trees, random forests and gradient boosting. 

 

2.1 CLASSIFICATION AND REGRESSION TREES 

Classification and regression trees (CART, Breiman et al., 1984) are considered as one of the 

most popular data mining algorithms. The aim of CART is predicting the value of a dependent 

variable 𝑌 given a set of predictors 𝑋 , … , 𝑋  by recursively applying binary partitions to the 

feature space. Therefore, this space is subdivided in 𝑝-dimensional hyper-rectangles (regions) 

and, successively, a simple model, such as mode or average, is fitted to each region. 

Classification or regression trees are used according to the nature of variable 𝑌, in particular: if 

𝑌 is a quantitative variable then regression trees are used, otherwise, when 𝑌 is categorical, it 

is the case of classification trees.  

More precisely, technical details of the building process of CART are defined as follows. First 

of all, consider regression trees. Suppose that 𝑁 sample units are observed, then for each sample 

observation, data consist in (𝑥 , 𝑦 ) for 𝑖 = 1, … , 𝑁, where 𝑥 = (𝑥 , . . . , 𝑥 ). The CART 

algorithm produces a partition of the predictors’ space into 𝑀 regions (𝑅 , … , 𝑅 ) and the 

response variable 𝑌 is modelled as a constant 𝑐  in each region. Therefore, the resultant tree 

can be expressed in additive way as the sum of the values of the constants in each region as 

shown by the following formula: 

𝑓(𝑥) =  𝑐 𝟏 (𝑥 ∈ 𝑅 ) 

where 𝟏(∙) is an indicator function that takes value 1 if 𝑥 ∈ 𝑅 , otherwise it is equal to 0.   

At the first step of the algorithm, all observations are located in the root node, consequently this 

node is characterized by strong heterogeneity. The goal is to define a rule that separates the 

observations into two nodes such that the homogeneity within the nodes is maximized. The 

CART algorithm splits a predictor at all the possible split points and the sample is binary 

partitioned at each possible split point, then the reduction of heterogeneity is evaluated for every 

possible binary partition. Therefore, let 𝑠 be the split point and 𝑋  be the splitting variable and 
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define the pair of half-planes 𝑅 (𝑗, 𝑠) = 𝑋 ∣ 𝑋 ≤ 𝑠  and 𝑅 (𝑗, 𝑠) = 𝑋 ∣ 𝑋 > 𝑠 . The idea is 

to seek to the split point 𝑠 and the splitting variable 𝑋  that solve the following minimum 

problem:  

min
,

min (𝑦 − 𝑐 )

∈ ( , )

+ min (𝑦 − 𝑐 )

∈ ( , )

 

Given any choice of 𝑗 and 𝑠, the inner minimization is solved by �̂� = 𝑎𝑣𝑒 𝑦 ∣ 𝑥 ∈ 𝑅 (𝑗, 𝑠)  

and �̂� = 𝑎𝑣𝑒 𝑦 ∣ 𝑥 ∈ 𝑅 (𝑗, 𝑠) , where 𝑎𝑣𝑒(∙) indicates the average. Then, the previous 

minimum problem resorts to: 

min
,

(𝑦 − �̂� )

∈ ( , )

+ (𝑦 − �̂� )

∈ ( , )

 

Therefore, it is feasible to determine the best pair (𝑗, 𝑠) which characterizes the best possible 

binary partition and each sample observation is assigned to one of the two resulting regions. 

This procedure can be repeated until every node contains only one observation, which is the 

case of maximum homogeneity, however this would be clearly meaningless and there would be 

a problem of overfitting. Then, the tree size has to be treated as a tuning parameter which 

represents model complexity and the usual strategy is to determine a minimum number of 

observations that a node should contain (node size), in order to stop the splitting process when 

it is reached. 

The last phase of CART algorithm is the so-called pruning, which is useful for outliers 

detection. The aim of pruning is to obtain a smaller and less complex tree by collapsing a certain 

number of non-terminal nodes, in order to have an easier interpretation of the final results. Then, 

let 𝑇  be the previously obtained tree and define 𝑇 as any possible tree obtainable by pruning 

𝑇 . The terminal nodes correspond to the regions 𝑅 , … , 𝑅  and they are indexed by 𝑚. 

Therefore, define the cost-complexity criterion 𝐶 (𝑇) as follows: 

𝐶 (𝑇) = 𝑁 𝑄 (𝑇)

| |

+ 𝛼|𝑇| 

where |𝑇| is the number of terminal nodes in 𝑇, 𝑁  is the number of observation in the 𝑚-th 

terminal node, �̂� = ∑ 𝑦∈  is the estimated response in 𝑅  and 𝑄 (𝑇) =
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∑ (𝑦 − �̂� )∈  is the impurity measure (squared-error node). 𝛼 is a tuning parameter that 

can take only positive values (𝛼 ≥ 0) and represents the trade-off between goodness of  fit to 

the data and tree size: for low values of 𝛼 the model fits better to the data and the tree size is 

large, but the tree is more difficult to interpret, while for high values of 𝛼 the model has a worse 

fit to data and the tree size is small, but the tree is easier to interpret. Now, for each value of 𝛼, 

find the unique subtree 𝑇 ⊆ 𝑇 that minimizes the cost-complexity criterion 𝐶 (𝑇) by using 

weakest link pruning in the following way: collapse the non-terminal node that causes the 

smallest per-node increase in ∑ 𝑁 𝑄 (𝑇)
| |  and repeat this step until the tree only composed 

by the root node is produced. In this way, a finite sequence of nested trees is obtained. Finally, 

𝛼, which is the optimal value of 𝛼, is estimated using 𝐾-fold cross-validation and the optimal 

tree 𝑇  is obtained. 

The only difference between regression trees and classification trees consists in the way of 

measuring the heterogeneity reduction when splitting nodes in the construction of the trees and 

also in the pruning phase. More specifically, the impurity measure 𝑄 (𝑇) previously defined 

cannot be used for the classification problem, where suitable measures could be the 

misclassification error, the Gini index or the cross-entropy. 

In conclusion, CART has become a very popular data mining algorithm, because it has several 

advantages and few disadvantages. First of all, it does not need any kind of distributional 

assumption either for dependent or explanatory variables. Then, these variables can be either 

quantitative or categorical and CART is also invariant under monotone transformations of 

independent variables. Moreover, outliers tend not to affect CART, since they are isolated into 

a single node. Another advantage is that CART effectively deals with high dimensionality 

problems, because it is able to select few important predictors from a large set of input variables, 

in order to detect and explain complex interactions in data. In this way, the results are easy to 

interpret. However, the main weakness of CART is that, since it is not based on a probabilistic 

model, it is not possible to assign a probability or a confidence interval to the obtained 

predictions, but the accuracy depends on how well a tree predicted the responses in other 

situations, similar to the analysed one. Moreover, predictions made by trees usually have high 

variance. This is due to the instability that generally characterizes classification and regression 

trees. More precisely, instability means that “small changes in input training samples may cause 

dramatically large changes in output classification rules” (Li et al., 2002). 
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2.2 RANDOM FORESTS 

Trees are able to capture very complex interactions in data and they are generally low biased, 

however they are characterized by high variance. This drawback can be faced using random 

forests (Breiman, 2001), which is an algorithm that aims to reduce the variance in tree-based 

models by averaging a large collection of de-correlated trees. In fact, Breiman defines random 

forests as “a combination of tree predictors such that each tree depends on the values of a 

random vector sampled independently and with the same distribution for all trees in the forest”. 

The idea is that trees can be treated as random variables, which are identically distributed with 

pairwise positive correlation. Consequently, given 𝐵 trees, the mean of their variance is 

computed in the following way: 

𝜌𝜎 +
1 − 𝜌

𝐵
𝜎  

where 𝜌 is the correlation between trees and 𝜎  is the variance of each tree. Clearly, as 𝐵 → ∞, 

the second term of the sum tends to zero. Therefore, random forests reduces the average 

variance by reducing the correlation between trees with a small increase in the variance of each 

tree. The reduction of the pairwise correlation is achieved by randomly selecting a subset of the 

set of predictors as candidates for splitting when growing random forest trees. If the total 

number of predictors is small, then it is possible to use linear combination of predictors in order 

not to have high correlation between trees. Specifically, technical details are described below.  

Given a dataset composed by 𝑁 sample observations, for each observation, values of a response 

variable 𝑌 and a set of predictors 𝑋 , … , 𝑋  are recorded. Successively, draw 𝐵 bootstrap 

samples of size 𝑁. Build one random forest tree 𝑇  (𝑏 = 1, … , 𝐵) for every sample of 

bootstrapped data by recursively repeating these steps for each terminal node of each tree, until 

the minimum node size 𝑛  is reached: 

 Randomly select 𝑚 predictors from the 𝑝 predictors as candidates for splitting 

 Find the best variable and the best split point among the 𝑚 predictors 

 Binary split of the node 

In this way, the output consists in the set of trees {𝑇 ; Θ } , where Θ  is a random vector 

generated for each tree, which characterizes the trees in terms of splitting variables, split points 

at each node and terminal-node values. The 𝐵 random vectors are independent one another and 

they are identically distributed. Finally, since random forests can be used in both classification 

and regression framework, the difference between the two approaches consists in how to make 
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predictions for new data points. In particular, given a new data point 𝑥 and considering the 

regression framework, the prediction is made as:  

𝑓(𝑥) =
1

𝐵
𝑇 (𝑥) 

If classification is considered, then indicate with 𝐶  the class prediction of the 𝑏-th random 

forest tree: 

𝐶 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 𝐶 (𝑥)  

where 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 indicates that the data point 𝑥 is assigned to the class where it is assigned 

in the most part of the 𝐵 random forest trees. 

The basic tuning parameters for random forests are the number 𝐵 of trees to build and the 

number 𝑚 of variables candidate for splitting. Usually, when 𝐵 is around 200 the algorithm 

tends to stabilize and the prediction performance does not particularly improve. Regarding the 

number of variables candidates for splitting, 𝑚 should be generally small. A very simple rule 

consists in setting 𝑚 = 𝑝, where 𝑝 is the total number of predictors. In this way, the 

correlation between trees is reduced and, therefore, also the variance of the average decreases.   

Random Forests may be considered as an improvement of CART, because of the variance 

reduction, which makes the tree to be far more stable and accurate in predictions. Moreover, 

few tuning is required. In general, random forests algorithm has different strengths: it works 

with both quantitative and categorical variables, it does not need distributional assumptions of 

variables, it is able to handle missing values in data and it is robust to outliers. As a drawback, 

since a large collection of trees has to be grown, random forests are computationally expensive 

and the interpretation is more difficult than dealing with a single tree as in CART. 

 

2.3 GRADIENT BOOSTING 

Boosting is one of the most powerful machine learning algorithms introduced in the last twenty 

years. Like CART and Random Forests, it can be used in both classification and regression 

frameworks. The key idea in boosting consists in combining a certain number of weak learners, 

such as trees, in order to obtain a powerful final model. In general, a boosted tree model can be 

represented as:  
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𝑓 = 𝑇(𝑥, Θ ) 

where 𝑇(∙) indicates the tree model, 𝑥 represents the data points and  Θ = 𝑅 , 𝛾  is a 

vector that characterizes each tree in terms of terminal nodes (𝑅  with 𝑗 = 1, … , 𝐽 indicating 

the number of terminal nodes) and constants that the model associates to each terminal node 

(𝛾  with 𝑗 = 1, … , 𝐽).  Now, assume to have 𝑁 data points of the form (𝑥 , 𝑦 ) such that 𝑥 are 

the predictors and 𝑦 is the response variable. At each iteration, the aim is to find a tree such that 

the prediction error (thus, a loss function) is minimized. Then, the previous model 𝑓  is 

obtained by solving in a stagewise manner the following minimum problem: 

Θ = arg min
 

𝐿 𝑦 , 𝑓 (𝑥 ) + 𝑇(𝑥 , Θ )  

where 𝐿(∙) is a loss function. A possible solution can be obtained by numerical optimization 

via gradient boosting. For each data point at each iteration, define the gradient as: 

𝑔 =
𝜕𝐿 𝑦 , 𝑓(𝑥 )

𝜕𝑓(𝑥 )
 

The gradient is defined only on data points in the training set, but the main goal is to generalize 

the boosted tree model 𝑓  to new data points in order to make predictions. Consequently, at 

each iteration, the solution consists in fitting a regression tree whose prediction are as close as 

possible to the negative gradient in the following way: 

Θ = arg min
 

−𝑔 − 𝑇(𝑥 , Θ )  

Θ  is an approximation of Θ , however they are similar enough to reach the purpose. In this 

way, the regions 𝑅  and the constants 𝛾  are obtained. Finally, at each iteration, the constants 

exploited to find the next constituent tree: 

𝑓 = 𝑓 (𝑥) +  𝛾 𝐼 𝑥 ∈ 𝑅  

In this algorithm, the main differences between classification and regression are in the 

functional forms of  the loss function 𝐿(∙) and the negative gradient −𝑔 . In particular, when 
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classification is considered, the negative gradient is defined for every possible class and for 

each observation as: 𝑦 − 𝑝 (𝑥 ), which corresponds to the difference between the observed 

classification in 𝑘-th class and the estimated probability of belonging to 𝑘-th class. The 

probabilities 𝑝 (𝑥 ) are obtained as: 

𝑝 (𝑥 ) =
𝑒 ( )

∑ 𝑒 ( )
 

where 𝑓 (𝑥 ) is the logit transform. 

The basic tuning parameters of gradient boosting algorithm are the number of iterations 𝑀 and 

the size of the constituent trees. On one hand, increasing the number of iterations will lead to 

an improvement in the accuracy of predictions in the training set; on the other hand, if the 

number of iterations becomes too high, then it is possible to have an overfitting problem, which 

will cause poor prediction performances on new data points. Considering the size of the 

constituent trees, also growing the trees too deeply could be a cause of overfitting. Usually, the 

size is fixed to be the same for each constituent tree and it does not vary from an iteration to 

another. Furthermore, there is another possible regularization strategy: the shrinkage. 

Specifically, shrinkage can be employed in the last step of each iteration of the algorithm, where 

the 𝑚-th constituent tree is defined: 

𝑓 = 𝑓 (𝑥) + 𝜈  𝛾 𝐼 𝑥 ∈ 𝑅  

 𝜈 is a regularization term, which scales the contribution of each tree of a factor 0 < 𝜈 < 1. 

Basically, the parameter 𝜈 controls the learning rate of the boosting procedure and it is 

straightforward that the risk of overfitting increases as the value of 𝜈 gets close to 1. 

In conclusion, boosting became a very popular algorithm in data science, because it has several 

advantages. First of all, predictions produced by this method are generally very accurate. 

Moreover, it works well with both quantitative and categorical variable, it does not need the 

features to be scaled (or any kind of transformation) and no distributional assumptions are 

needed. However, boosting presents also some disadvantages. Like Random Forests, since it is 

an ensemble of trees, the interpretation is quite hard and the computational cost could be very 

high, especially when dealing with a lot of predictors. Furthermore, the parameter tuning for 

controlling the learning rate of boosting procedure may be computationally expensive. 
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3. EVALUATING SHOOTING PERFORMANCE IN THE BASKETBALL COURT 

This chapter represents the main part of my thesis. All the empirical analyses are descripted in 

details, including the description of the dataset.  

 

3.1 AIM OF THE ANALYSES 

The aim of this thesis is proposing the use of machine learning algorithms, in order to obtain 

graphical tools for the evaluation of shooting performance of players or teams in the basketball 

court. The idea is to study how the shooting performance varies in different areas of the court, 

in order to highlight players’ or teams’ shooting patterns and favourite spots. In order to achieve 

this goal, in the first analysis basic tools for basketball analysts are described. Successively, an 

approach with machine learning is proposed in two deeper analyses. The first one is taken from 

the paper Basketball spatial performance indicators and graphs by Paola Zuccolotto, Marica 

Manisera and Marco Sandri and the aim is to find a partition of the court induced by 

classification trees. The second analysis aims to predict shot outcomes and scoring probabilities 

in every point of the court by applying random forests and gradient boosting and the results are 

exploited for producing a further graphical tool. Finally, a real life application of the previously 

proposed tools shows how to use them for the comparison of the shooting performance of three 

players.     

 

3.2 DATASET 

The data source is bigdataball.com, which is a website that provides data science materials 

about different American sports. In particular, it makes available several kinds of datasets about 

the main championships of basketball (NBA and WNBA), baseball (MLB), football (NFL) and 

hockey (NHL). 

The dataset used for the analysis contains the so-called play-by-play data of all NBA regular 

season and playoff games played in 2018-2019. This particular type of data consists in a set of 

variables that describe all relevant events happened during a match. Specifically, it is composed 

by the following variables: 

 game_id: number that identifies a specific match 

 data_set: name of the dataset (2018-2019 Regular Season or 2019 Playoff) 
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 date: it indicates when the match was played 

 a1, a2, a3, a4, a5: name of away team’s players that are on the court in a specific instant 

of the match 

 h1, h2, h3, h4, h5: name of home team’s players that are on the court in a specific 

instant of the match 

 period: discrete variable that indicates the quarter of the match 

 away score and home score: numbers that indicates the score for respectively away and 

home teams in a certain instant of the match 

 remaining_time: time remained to end a period of the match 

 elapsed: time passed from the beginning of the period 

 play_length: length of the play in terms of time 

 play_id: number that identifies a specific play 

 team: name of the team for which an event happens 

 event_type: qualitative variable that describes the event 

 assist: when a shot is scored, it indicates the name of the player who made the assist 

 away and home: when there is a jump ball, it indicates the name of players involved for 

respectively the away team and the home team 

 block: when a shot is blocked, it indicates the name of the player who blocked it 

 entered and left: when there is a substitution, it indicates the names of players that 

respectively enter and left the court 

 num: when there is a free throw, it indicates if it is the first (1) one or the second (2) 

one and so on 

 opponent: when there is a foul, it indicates the name of the player that is fouled 

 outof: total number of free throws shot 

 player: name of the player that made a play 

 points: when a basket is scored, it indicates the number of points scored with that basket 

 possession: after a jump ball, it indicates the name of the player that controlled the ball 

 reason: description of a foul or a turnover 

 result: categorical variable that, when there is a shot, takes value “made” or “missed” 

describing the result of the shot 

 steal: when there is a turnover, it indicates the name of the opponent player that stole 

the ball 

 type: it indicates the type of play 
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 shot_distance: when there is a shot, it indicates the distance from the basket (in feet) 

 original_x and original_y: coordinates of the position from where a shot is taken 

 converted_x and converted_y: see above, but the origin is changed 

 description: brief description of the event 

In order to perform the analysis using the R package BasketballAnalyzeR (Manisera, Sandri and 

Zuccolotto), it is necessary to manipulate the dataset with the command PbPmanipulation, 

which adds the following five more variables to the original dataset: 

 periodTime: number of seconds passed in a period when the event happens 

 totalTime: number of seconds passed in the whole match when the event happens 

 playlength: number of seconds that indicates the length of the play in terms of time 

 oppTeam: when an event happens for a team, it indicates the name of the opponent 

team 

    

3.3 EMPIRICAL ANALYSES 

In this section, different analyses are presented for the evaluation of shooting performance in 

the basketball court and the production of graphical tools. At the beginning a basic analysis is 

illustrated and, going ahead in the chapter, the analyses become deeper and more complex under 

a statistical point of view. In the end, a practical example of how to use the proposed tools in 

the comparison of players’ shooting performance is proposed.       

 

3.3.1 SPGs AND CART FOR PARTITIONING THE BASKETBALL COURT 

This analysis comes from the paper Basketball spatial performance indicators and graphs by 

Paola Zuccolotto, Marica Manisera and Marco Sandri. Focusing the attention on spatial 

performance graphs (SPGs), the authors start the analysis describing the basic tools for analysts 

for evaluating the shooting performance of a player or a team: the shot chart with made and 

missed shots and the density plots. These SPGs are useful to highlight players’ favourite spots 

on the court to shoot from. Successively, another analysis that can be performed consists in 

splitting the court into predetermined areas and analyse the shooting performances in these 

zones of the court. The R package BasketballAnalyzeR allows to produce all the previous cited 

SPGs. The last analysis introduced in the paper aims to overcome the shooting performance 

analysis in predetermined area of the court identifying, for each player, a unique partition of the 
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court in rectangles based on player’s shooting accuracy. The key idea is to use classification 

trees in order to find the best partition of the court such that the difference in shooting 

percentages between rectangles is maximized. Then, the dependent variable 𝑌 is a binary 

variable that describes the outcome of an attempted shot (made or missed) and the predictors 

are the space coordinates of each attempted shot: 𝑥 (width) and 𝑦 (height). Clearly, the sample 

observations are the attempted shots. In this way, it is possible to produce several data 

visualizations by representing the rectangles obtained by the partition of the predictors’ space 

induced by the estimated tree and colouring the obtained rectangles according to different 

indicators. As case study, the authors analysed the shooting performance of Stephen Curry in 

the regular season games of 2017/2018 NBA championship. 

Since the aim of my thesis is to extend the analyses introduced in this paper, as first step, I 

decided to replicate them using play-by-play data referring to regular season and playoff games 

of 2018/2019 NBA championship and the analysed player is again Stephen Curry. First of all, 

consider Curry’s shooting percentages and attempted shots, in order to have a rough idea of his 

shooting performance: 52% for 2-point shots (377/725) and 42.9% for 3-point shots (441/1027). 

Since scoring 3-point shots is obviously more difficult than scoring 2-point shots, it is possible 

to say that he performs better from outside the 3-point line, even if the shooting percentage is 

lower. Expected points are helpful in order to understand this concept. They are defined as the 

multiplication between the value of the shot (2 or 3 points) and the scoring probability, which 

can be roughly estimated by the shooting percentage. Then, Curry’s expected points are 1.04 

when he attempts a 2-point shot and 1.287 when he takes a 3-point shot. The evidence of his 

better performance in 3-point shots than 2-point shots is confirmed by the most interesting 

aspect that comes out from this very basic analysis: Curry takes a lot more 3-point shots than 

2-point shots. There could be many reasons to  justify this: for example, the role and the small 

size of the player or the evolution of nowadays basketball, where all teams tend to increase the 

number of 3-point attempts year by year. However, knowing if a shot is taken outside or inside 

3-point line is not enough for in depth evaluation of shooting performance: these rough statistics 

does not give information about the precise position in the basketball court from when the shot 

is attempted. In order to have more precise idea (but still rough) of players’ shooting patterns 

and favourite spots, it is possible to display the shot chart with made and missed shots and the 

density plots, as shown respectively in figure 1 and figure 2. Analysing these plots, it is possible 

to notice that Curry has a long shooting range, since he attempted several shots from nearly 2 

metres away from the 3-point line (about 9 metres from the basket) and that he shoots frequently 
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from outside the 3-point line and from very close to the basket, while the number of shots 

attempted from middle-distance is definitely lower. He also prefers shooting from the middle 

than from the corners. 

 

 

 

 

 

Figure 1: Shot chart with made and missed shots - Stephen Curry, NBA regular season and 

playoff 2018/2019 
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Figure 2: Density plots with polygons (top-left), raster (top-right), hexbins (bottom) - Stephen 

Curry, NBA regular season and playoff 2018/2019 

 

Successively, the analysis proceeds with the realization of another shot chart where the court is 

subdivided in predetermined areas, in order to evaluate the player’s shooting performance in 

these zones. The function shotchart of BasketballAnalyzeR splits the court in four areas 

according to the distance of the basket: the splitting lines are the 3-point line, a virtual line in 

between the basket and the 3-point line and the arc of radius 4 feet around the basket (the latter 

determines the so-called restricted area). Then, this function allows the user to make a further 

split of the former three zones (restricted area is excluded) into the desired number of sectors. 

In order to be coherent with the analyses that are described later, I decided to colour each area 

with respect to the shooting percentage within it. The resultant shot charts are displayed in 

figure 3. These SPGs show that Curry’s shooting percentages are higher in the restricted are 

(61% with 312 attempted shots) and in the very next area on player’s right side (61% with only 

18 attempted shots). Considering the 3-point shots, he has better shooting percentages from his 

right than from his left. A possible explanation of these facts could be that he is a right-handed 

player. On the contrary, considering middle-distance shots, he performs better from his left, but 
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the number of attempted shot from middle-distance is small and probably it is not enough to 

assume that his performance on the right is definitely worse. The most interesting result is 

shown by the shot chart with 6 sectors: Curry’s 3-point shots are more accurate when attempted 

from the wings (48% from both left and right wings) than from the middle (38% from middle-

right and 36% from middle-left). 

 

 

 

Figure 3: SPGs with 4 sectors (top) and 6 sectors (bottom) and areas coloured according to 

shooting percentages - Stephen Curry, NBA regular season and playoff 2018/2019 

 

Finally, I propose the partition of the court with classification trees. Before fitting the model to 

the data, I decided to remove all shots attempted from beyond the half-court line, because they 

are useless for evaluating the shooting performance. These observations are clearly outliers and 

they would have affected the model estimation in a bad way. I fit a classification tree with 

complexity parameter 𝑐𝑝 = 0.005 and minimum number of observations in a node for having 

a split equal to 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 = 300. This means that a node can be candidate for a split only if it 

is composed of at least 300 observations and that any split must decrease the overall lack of fit 

at least of a factor 𝑐𝑝 = 0.005. These parameters permit to save computational time and to 

improve the easiness of interpretation by pruning the tree. In a preliminary analysis, I tried to 

fit the tree with 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 = 150. In this way, 13 terminal nodes were obtained, then the court 

was subdivided in 13 areas and the interpretation was hard: it is not very informative to have 

several small areas in the evaluation of the shooting performance.   

Figure 4 shows the obtained tree. Every node is coloured in green or in blue, according to the 

frequency of made and missed shots that it contains: if there are more made shots than missed 

shots, then the node is green otherwise it is blue. Moreover, for each node, the name of the 
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prevalent category (made or missed), the relative frequency of both made and missed shots,  the 

node number, the percentage of observations contained and the splitting rule are displayed. 

Considering the latter, observations that satisfy the rule move to the left branch, whereas the 

others move to the right one. 

 

Figure 4: Classification tree - Stephen Curry, NBA regular season and playoff  2018/2019 

 

Starting from the root node containing all the observations, there is the first split for predictor 

𝑦 = −24. Consequently, this split creates a virtual horizontal line at 24 feet from the centre of 

the court and the shots are divided in two groups according if they are attempted above or below 

this virtual line. It follows that 55% of the shots are attempted below with a shooting percentage 

of 53% and 45% of the shots are attempted above with a shooting percentage of 39%. Then, the 

shots above the line split for predictor 𝑥 = 2.6, which means that a vertical virtual line is created 

at 2.6 feet to the right of the centre of the court and so on, until terminal nodes are obtained. 

The terminal nodes are represented by rectangles on the court and the difference in shooting 

percentages between rectangles is maximized, because the algorithm defines groups of 

observations that are homogenous with respect to the response variable (shot outcome: made 

or missed). The partition of the court induced by classification tree is visualized in figure 5. 

Analysing this graph, it is possible notice that the results are quite coherent with the ones 

obtained by the partition of the court in predetermined areas. First of all, there is again evidence 

that he performs better from his left when shooting from middle-distance. This is remarked by 
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the presence of the two rectangles with the highest shooting percentages (62% and 60%). In 

particular, consider the rectangle coloured in dark red, which ranges from very close to the 

basket until outside the 3-point line in the player’s left corner. It means that the opponent 

defence has to be very worried in not letting him shoot from beyond the 3-point line in his left 

corner, because his shooting performance from this position is similar to his performance close 

to the basket, but he is even more dangerous, since it is a 3-point shot. Another evidence 

confirmed is the fact that he performs really well when attempting 3-point shots from the wings, 

but the graph shows also one more spot from where he shoots with confidence (even more than 

from the wings): the light red rectangle in the middle that ranges from above the free throw line 

until beyond the 3-point line. This latter zone was not identified by the SPG with predetermined 

areas and this is a proof of how this analysis can help in catching more details. 

       

Figure 5: Partition of the court induced by the classification tree, with rectangles coloured 

according to shooting percentage - Stephen Curry, NBA regular season and playoff  2018/2019 

 

3.3.2 SHOOTING PERCENTAGE PREDICTION WITH RANDOM FORESTS AND 

GRADIENT BOOSTING 

I extended the previously illustrated analysis proposing the use of random forests and gradient 

boosting for predicting shooting percentages in all possible positions in the court, in order to 

produce a further SPG. For both algorithms I use, as in the analysis with CART, the space 

coordinates of the court as predictors and the outcome of the shot as response variable. In order 



25 
 

to classify each shot as made or missed, boosting and random forests estimate the probability 

for each observation of belonging to each class of the response variable: if the estimated 

probability that a shot scores a basket given the space coordinates is greater than 50%, then the 

shot is assigned to the class “made”, otherwise it is assigned to the class “missed”. Therefore, 

the probability that a shot belongs to the class “made” can be interpreted as an estimate of 

shooting percentage (or scoring probability) from that specific position of the court. It is 

possible to exploit these results for displaying a court map where each point is coloured 

according to its estimated shooting percentage. In this way, unlike the court partitioning with 

classification trees, areas of the court which are homogeneous with respect to shooting 

percentage are not constrained to be rectangles, but they are free-shaped. Also in this case, the 

partition of the court is unique for each player (or team) and the areas are not predetermined. 

Again, Stephen Curry’s shots are analysed as case study. Before fitting the models, the shots 

attempted from beyond the half court line are removed, in order not to let them affect the 

estimates in a bad way, and the sample is randomly divided into training and test set for 

assessing the models’ performances. The training set is composed by 1314 observations (75% 

of the whole sample) and the test set by 438 observations (25% of the whole sample). 

First of all, consider random forests. I fit the model on the training set with the following tuning 

parameters: number of trees equal to 𝑛𝑡𝑟𝑒𝑒 = 500 and number of variables candidates for 

splitting equal to 𝑚𝑡𝑟𝑦 = 1. The former means that 500 trees are built and averaged in order 

to make predictions, whereas the latter is set to 1, because the model has only 2 predictors, then 

the only way to reduce the correlation between trees is to try only one variable at each split. In 

a preliminary analysis, I fitted the model the model with 𝑛𝑡𝑟𝑒𝑒 = 200 and 𝑛𝑡𝑟𝑒𝑒 = 1000. The 

obtained results were very similar (but slightly worse) than in the presented model, then I 

decided to set 𝑛𝑡𝑟𝑒𝑒 = 500, which is the default value of function randomForest of R package 

randomForest. Successively, the prediction power of the model is tested both on training and 

test sets and the function randomForest computes also the out-of-bag estimate of the error rate. 

The prediction accuracy is computed as the ratio between well classified observations and the 

number of observations in the sample. Results are summarized in table 1.  
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Training set Made Missed 

Made 619 17 

Missed 3 675 

Accuracy 98.5% 

 

Test set Made Missed 

Made 96 99 

Missed 103 140 

Accuracy 53.9% 

 

Out-of-bag sample Made Missed 

Made 299 323 

Missed 300 392 

Accuracy 52.6% 

 

Table 1: Confusion matrices and accuracy for random forests - Stephen Curry, NBA regular 

season and playoff 2018/2019 

 

Observing the table, there are two main facts to notice. The first one is the coherence between 

the accuracy computed in the test set and in the out-of-bag sample, which show very similar 

values. The second (and most relevant) one is the large difference between the accuracy in 

training and test set. Since the model shows an outstanding prediction performance in the 

training set and a poor one in the test set, this is a clear evidence of overfitting. This is reflected 

also in the court map that will be illustrated later.  

Now, consider gradient boosting. I fit the model on the training set and I used the function train 

of R package caret to optimize the tuning parameters by 10-fold cross-validation. The optimal 

tuning parameters obtained in this way are the number of iterations equals to 𝑛𝑟𝑜𝑢𝑛𝑑 = 150, 

the size of constituent trees equals to 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 1 and the shrinkage parameter equals to 

𝑒𝑡𝑎 = 0.4 (it corresponds to 𝜈 in the methodological section). The meaning is that 150 trees 

are summed up in order to minimize the prediction error, each tree admits only one binary split 

(trees do not grow deeply to prevent overfitting) and the contribution of each tree is scaled of a 
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factor 0.4 (again, for preventing overfitting). The results regarding confusion matrices and 

accuracy are shown in table 2. 

 

Training set Made Missed 

Made 311 197 

Missed 311 495 

Accuracy 61.3% 

 

Test set Made Missed 

Made 83 70 

Missed 116 169 

Accuracy 57.5% 

 

Table 2: Confusion matrices and accuracy for gradient boosting - Stephen Curry, NBA regular 

season and playoff 2018/2019 

 

In this case, the prediction accuracy in training set is only slightly better than in test set. It is an 

evidence of how good gradient boosting is in preventing overfitting. Moreover, it achieves a 

prediction accuracy of 57.5% in test set, which is a very good result and it is higher compared 

to random forests. For these reasons, it is possible to assert that gradient boosting performs 

better than random forests in this specific task. 

As explained before, random forests and gradient boosting produce an estimate of the 

probability that an attempted shot scores a basket, given the position in the court, for 

determining the classification of shots as made or missed. I exploited this property to obtain an 

estimate of the scoring probability in every possible point of the court. Therefore, I created a 

dataset with new observations, which represent shots from every possible position on the court: 

the space coordinates 𝑥 and 𝑦 are assigned to each sample unit and it is generated one data point 

for each possible couple of values of 𝑥 and 𝑦. Successively, I used the previous descripted 

models to compute the scoring probability for each new data point. Finally, I displayed these 

results in a court map, which I propose as SPG. The shots (data points) are divided in four 

groups according to their scoring probability: 0% - 30% (low percentage shot), 30% - 45% 
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(medium-low percentage shot), 45% - 60% (medium-high percentage shot), 60% - 100% (high 

percentage shot) and each point on the map is coloured according to the group it belongs to. 

The values of scoring probabilities for determining the groups are chosen according to 

pragmatic considerations about shooting percentages in basketball. The court map obtained 

fitting random forests is displayed in figure 6, while figure 7 shows the one obtained fitting 

gradient boosting.  

 

 

 

 

Figure 6: Partition of the court obtained by estimating scoring probabilities with random forests 

- Stephen Curry, NBA regular season and playoff 2018/2019 
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Figure 7: Partition of the court obtained by estimating scoring probabilities with gradient 

boosting - Stephen Curry, NBA regular season and playoff 2018/2019 

 

Analysing the graphs, it is straightforward to notice the effect of overfitting in random forests: 

there are several zones of the court with estimated scoring probability over 60%, even at 9 or 

10 metres away from the basket and it is obviously unrealistic. Moreover, all the area near the 

half court line should have low scoring probability (0% - 30%), but there are areas with higher 

scoring probability estimates. On the contrary, the graph obtained with gradient boosting shows 

more conservative estimates of the scoring probability: there are few areas characterized by 

scoring probability over 60% and the zone around the half court is estimated to have scoring 

probability under 30%. The main problem is the high scoring probability associated to areas 

very close to the baseline, because it is generally very rare to shoot from there and scoring 

probability should be low. It is due to the algorithm, which interprets the position as close to 

high shooting percentage areas such as close to the basket or 3-point shots from the corners. 

Anyway, both graphs are useful for the evaluation of player’s shooting ability and to highlight 

the favourite spots. In fact, many evidences that came out in the previous analyses are 

confirmed. The first thing to notice is Curry’s good performance in 3-point shots from the 

wings, from the middle and from the corners, which are coloured in violet and blue in the graph 

for random forests and in blue in the graph for gradient boosting. His shooting ability from 
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middle-distance is quite homogeneous from left to right, whereas from inside the painted area 

he performs better from his right. Furthermore, since the area coloured in red (low percentage 

shots) ranges from about 10 metres from the basket to the half court line in both SPGs, this is 

another evidence of Curry’s very long shooting range. In conclusion, this SPG can be a very 

useful tool for evaluating players’ shooting ability. However it is important to remember that 

the algorithms try to predict the outcome of virtual shots basing on existing shots, then it reflects 

the player’s performance in real life, but the presence of outliers (e.g.: shots from near the half 

court line) or the absence of shots from some positions (e.g.: very close to the baseline) can 

lead to some errors in the estimation of scoring probabilities. 

In conclusion, predicting the outcome of a shot is a very difficult task, because there are many 

factors that play an important role in influencing the shot result and often, they are not 

measurable (e.g.: the player is off balance when attempting the shot) or they are not available 

in play-by-play data (e.g.: time that ball has been in player’s hands before shooting). However, 

the fact that the prediction made basing on the position in the court is over 50% accurate for 

both random forests and gradient boosting is an evidence that the spatial position is one of the 

most determinant factors. Furthermore, when the aim is to predict the outcome of future shots 

in order to produce a court map, the position on the court is the only available information. 

 

3.3.3 COMPARING PLAYERS’ SHOOTING PERFORMANCES 

The tools proposed in this chapter are useful for evaluating players’ shooting performances, in 

order to define game strategies (designing offensive situations that aim to make players attempt 

shots from their favourite spots or understanding where the opponent’s players can be more 

dangerous and how to limit them)  and specific training programmes for each player. Another 

possible application is the comparison between players, which is essential in scouting when the 

coaching staff has to choose the players that have the best fit with the team, in order to sign 

them. In this section, I focus on the latter and I decided to compare the shooting performances 

of Stephen Curry, Damian Lillard and Luka Doncic. It is fundamental to remind that the aim of 

this analysis is not to determine which of the three players is the best, but it is the evaluation 

and the comparison of them only in terms of shooting performance, that is a small part of 

basketball. I selected Lillard and Doncic for making a comparison with Curry for many reasons. 

First of all, they play the same role: playmaker or point guard as traditional role and primary 

shot creator as advanced role, which means that they often have the ball in their hands and they 
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are very good in scoring themselves and making their teammates score. Consequently, these 

three players attempt a large number of shots per game, which permits to have a more effective 

analysis of their shooting performance. Moreover, Curry and Lillard can be considered very 

similar players, because of their style of playing, their size (Curry stands 1.91 metres and weighs 

86 kilograms, while Lillard stands 1.85 metres and weighs 89 kilograms) and their experience 

background (2018/2019 NBA season was the tenth in Curry’s career and the seventh in Lillard’s 

career). Another interesting common aspect between the two players is that they played in 

excellent teams in season 2018/2019: Portland Trail Blazers (Lillard’s team) finished the season 

at the second place of Western Conference, while Golden State Warriors (Curry’s team) 

finished at the first place of Western Conference and at second place of all NBA. On the 

contrary, Luka Doncic has big size compared to players in his role (he stands 2.01 metres and 

weighs 104 kilograms), 2018/2019 season was his first in NBA (he was born in 1999, whereas 

Lillard was born in 1990 and Curry in 1988) and his team (Dallas Mavericks) did not qualify 

to playoff that year. Consequently, there are less data about Doncic (72 games played), with 

respect to Curry (91 games played) and Lillard (96 games played).  Furthermore, Doncic played 

three years in Europe at Real Madrid before going to NBA, while Curry and Lillard played only 

in USA. 

The first step of the analysis consists in displaying the shot chart with made and missed shots, 

the density plots and the SPG with the court divided in predetermined areas, in order to identify 

players’ shooting patterns and favourite spots and to remark the differences between Curry, 

Doncic and Lillard. Figure 8 and Figure 9 show the results respectively for Lillard and Doncic; 

for Curry see figure 1, figure 2 and figure 3. 
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Figure 8: Shot chart with made and missed shots (top-left), density plots with polygons (top-

right), raster (middle-left), hexbins (middle-right), SPGs with 4 sectors (bottom-left) and 6 

sectors (bottom-right) and areas coloured according to shooting percentages - Damian Lillard, 

NBA regular season and playoff  2018/2019 
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Figure 9: Shot chart with made and missed shots (top-left), density plots with polygons (top-

right), raster (middle-left), hexbins (middle-right), SPGs with 4 sectors (bottom-left) and 6 

sectors (bottom-right) and areas coloured according to shooting percentages – Luka Doncic, 

NBA regular season 2018/2019 

 

By this analysis many evidences come out. A common tendency for the three players consists 

in attempting the most part of their shots from beyond the 3-point line or close to the basket, 

while shots from middle distance are rarely attempted: this trend is particularly extreme for 

Luka Doncic. Then, they show similar performances in the restricted area, where Lillard has 

the worst shooting percentage (55%), but with the highest number of attempts (576). Curry and 

Lillard frequently shoot from very long distance, in particular the nickname “Logo Lillard” was 



34 
 

assigned to him because of this peculiarity (there is a sticker with the NBA logo attached on the 

court at beyond 10 metres from the basket). Doncic and Lillard take very few 3-point shots 

from the corners than from the wings or from the middle, although the former shows a good 

performance from that position. Lillard shoots more and better from his right than from his left 

both for 3-point and middle-distance shots, while Curry is more efficient from his right for 3-

point shots and from his left from middle-distance. Doncic’s shooting performance is quite 

homogeneous throughout the court, with some peaks such as the area along the baseline on his 

left (but with few attempted shots) and the restricted area. Looking at the density plots, it is 

possible to notice the most interesting evidence in this analysis: Doncic attempts shots from 

inside the so-called painted area (the rectangle that ranges from the free throw line to the 

baseline) more frequently than Curry and Lillard. A reasonable explanation is the bigger size: 

often, Doncic has a physical advantage with respect to his direct defender, then he tries to 

exploit it going closer to the basket when attempting shots. In general, Curry’s shooting 

performance seems to be the best, because he shoots with higher percentages from almost all 

predetermined areas in the court. Apart from his undiscussed ability (several experts consider 

him the best shooter in history), there could be also another factor that conditioned his 

performance: the team where he plays. Golden State Warriors had Klay Thompson and Kevin 

Durant in their roster in season 2018/2019, which are very good offensive players. Then, it was 

surely difficult for the opponents to always pays attention in perfectly guarding all three players, 

which means that Curry could have more space to shoot in many situations. Considering Lillard, 

Portland Trail Blazers were a good team, but they had two main offensive threats (not three like 

Golden State): Lillard and McCollum, consequently it is probable that the former took more 

contested and difficult shots than Curry. The situation is slightly different for Doncic: he was 

the best player of his team at his first year in NBA and Dallas Mavericks were not a good team, 

then his inexperience and the absence of another very good offensive player may have 

conditioned his shooting performance. 

The next step of the analysis consists in comparing the shooting performance of the three 

players with respect to their own partition of the court induced by fitting the classification tree 

as describe in section 2.4.1. Before fitting the model, the shots attempted beyond the half court 

are removed. In preliminary analyses, I set parameter 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 = 300 for Lillard, because of 

the high number of attempted shots, but a partition of the court with only 3 areas was produced 

and I want to obtain a more detailed picture of player’s shooting performance. Then, I reduced 

the value of 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 to 150 to find a more informative court partition. Considering Doncic, 
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since the number of attempted shots is lower, I set 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 = 150 and 3 terminal nodes are 

obtained. However, decreasing 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 to 100 or even 80, produces only one more small area 

that does not improve the information. Therefore, for both Luka Doncic and Damian Lillard a 

classification tree model is fitted with complexity parameter 𝑐𝑝 = 0.005 and minimum number 

of observations in a node for having a split equal to 𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 = 150. The obtained 

classification trees and the court maps with their own partitions are displayed in figure 10, figure 

11, figure 12 and figure 13. 

 

 

 

Figure 10: Classification tree - Damian Lillard, NBA regular season and playoff 2018/2019 
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Figure 11: Partition of the court induced by the classification tree, with rectangles coloured 

according to shooting percentage (bottom) - Damian Lillard, NBA regular season and playoff 

2018/2019 

 

 

Figure 12: Classification tree – Luka Doncic, NBA regular season 2018/2019 
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Figure 13: Partition of the court induced by the classification tree, with rectangles coloured 

according to shooting percentage (bottom) – Luka Doncic, NBA regular season 2018/2019 

 

Considering Damian Lillard, his own partition of the court underlines the evidence that he 

performs better when he shoots from his right. In particular he has good shooting percentages 

in the red rectangle that ranges from the elbow to the sideline, both for 3-point and middle 

distance shots, and in the light red rectangle beyond the 3-point line in middle-right zone. 

Another interesting aspect regards his shooting performance in the restricted area, where he is 

accurate from very close to the basket, but his efficacy is definitely lower near the arc. This 

latter detail did not come out analysing predetermined areas on the court. For what concerns 

Luka Doncic, the evidence that his shooting performance is quite homogeneous throughout the 

court is confirmed: his own partition is composed by only four areas. The red rectangle close 

to the basket highlights his ability in shooting in the restricted area and again, his bigger size 

with respect to direct defenders should help him in performing that good. Comparing the court’s 

partitions of Curry, Doncic and Lillard, it is straightforward to notice that Curry’s shooting 

performance is the best one. His partition presents more and larger red rectangles, which show 

that he shoots with confidence in more spots than Lillard and Doncic. Consequently, it should 

be more difficult for opponents to make him shoot from zones where he performs worse. 
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Finally, the last phase of the analysis consists in fitting random forests and gradient boosting 

for estimating scoring probabilities in every point of the court and displaying the result in a 

court map. Before fitting the models, the sample is randomly divided into training set (75% of 

the sample) and test set (25% of the sample), in order to assess the performance of the models. 

Then, analysing Lillard the training set is composed by 1393 shots and the test set by 465 shots, 

whereas for Doncic there are 879 shots in the training set and 293 shots in the test set. 

First of all, consider random forests. For both players I fitted the model on the training set with 

these tuning parameters: number of trees equals to 𝑛𝑡𝑟𝑒𝑒 = 500 and number of variables 

candidates for splitting equals to 𝑚𝑡𝑟𝑦 = 1. For what concerns gradient boosting, I optimized 

the tuning parameters by 10-fold cross-validation with the function train of R package caret 

and the obtained values are the same the two players. The model fitted on Lillard’s and Doncic’s 

training sets have the following optimal parameters: number of iterations equals to 𝑛𝑟𝑜𝑢𝑛𝑑 =

50, size of constituent trees equals to 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 1 and shrinkage parameter equals to 𝑒𝑡𝑎 =

0.3. The confusion matrices and the measures of accuracy are reported in table 3, table 4, table 

5 and table 6 below. 

            

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

Training set Made Missed 

Made 589 22 

Missed 22 760 

Accuracy 96.8% 

 

Test set Made Missed 

Made 93 99 

Missed 115 158 

Accuracy 54.0% 

 

Out-of-bag sample Made Missed 

Made 292 319 

Missed 287 495 

Accuracy 56.5% 

 

Table 3: Confusion matrices and accuracy for random forests – Damian Lillard, NBA regular 

season and playoff 2018/2019 

 

Training set Made Missed 

Made 183 102 

Missed 428 680 

Accuracy 62.0% 

 

Test set Made Missed 

Made 69 46 

Missed 139 211 

Accuracy 60.2% 

 

Table 4: Confusion matrices and accuracy for gradient boosting – Damian Lillard, NBA regular 

season and playoff 2018/2019 
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Training set Made Missed 

Made 370 10 

Missed 4 495 

Accuracy 98.4% 

 

Test set Made Missed 

Made 60 36 

Missed 71 126 

Accuracy 63.5% 

 

Out-of-bag sample Made Missed 

Made 163 211 

Missed 160 345 

Accuracy 57.8% 

 

Table 5: Confusion matrices and accuracy for random forests – Luka Doncic, NBA regular 

season 2018/2019 
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Training set Made Missed 

Made 140 100 

Missed 234 405 

Accuracy 62.0% 

 

Test set Made Missed 

Made 55 28 

Missed 76 134 

Accuracy 64.5% 

 

Table 6: Confusion matrices and accuracy for gradient boosting – Luka Doncic, NBA regular 

season 2018/2019 

 

The model performances are similar to the ones obtained analysing Curry. Random forests 

clearly overfit the data: nearly perfect accuracy in making prediction in the training set, but the 

model performance definitely deteriorates for predictions in test set and on out-of-bag sample. 

Gradient boosting’s performance is more stable for both training and test sets. The main thing 

to notice is a bit of underfitting in the model fitted for Doncic’s data, since the prediction 

accuracy is slightly higher in test set (64.5%) than in training set (62.0%). However, the 

prediction accuracy is higher in the models for Lillard and Doncic, than in models for Curry 

and accuracy values over 60% show a good model performance. This underlines how 

determinant is the position of the court in influencing the outcome of shots, but a further 

consideration has to be done: observing the confusion matrices, it is clear that both gradient 

boosting and random forests have more difficulties in predicting made shots than missed shots. 

Since for both Lillard and Doncic the overall number of missed shots is higher than the number 

of made shots, it is reasonable that models’ prediction performance improves. 

Successively, the dataset with new observations, which represent shots from every possible 

position on the court is created and the previous described models are used to predict the 

outcome of those shots. The probabilities of each observation of belonging to class “made” are 

computed and can be interpreted as estimated scoring probabilities. These scoring probabilities 

are divided in four groups as described in section 2.4.2, in order to produce a partition of the 
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court in areas that are not constrained to be rectangles. The SPGs obtained in this way for Lillard 

and Doncic are displayed respectively in figure 14 and figure 15. 

 

 

  

Figure 14: Partition of the court obtained by estimating scoring probabilities with random 

forests (left) and gradient boosting (right) – Damian Lillard, NBA regular season and playoff 

2018/2019 

 

 

  

Figure 15: Partition of the court obtained by estimating scoring probabilities with random 

forests (left) and gradient boosting (right) – Luka Doncic, NBA regular season 2018/2019 

 

The effects of overfitting for random forests are straightforward to be noticed in the court maps 

of both players, because of the presence of areas coloured in violet (estimated scoring 

probability over 60%) and in blue (estimated scoring probability between 45% and 60%) close 

to half court line. Even for gradient boosting, the zone near half court is not totally coloured in 
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red, but the estimates of scoring probabilities look more realistic. These SPGs confirm several 

evidences from the previous analyses: the peculiarity of Lillard of shooting better from his right, 

the ability of Doncic in shooting from inside the painted area thanks to his big size and also his 

homogeneous shooting performance throughout the court, except for a slightly better 

performance from the area along the baseline (same result of the analysis with classification 

trees). Moreover, these court maps highlight the longer shooting range of Curry and Lillard 

with respect to Doncic, since their red area is nearer to the half court line. In general, the portion 

of the court coloured in blue and violet is larger in Curry’s court map and this is another proof 

that his shooting performance is definitely better compared to the ones of Doncic and Lillard.  

In conclusion, these analyses prove the efficacy of the proposed tools in evaluating and 

comparing players’ shooting performances. In this sense, data visualizations are fundamental, 

because they allow fast and easy interpretations of the results, even understandable by a non-

technical audience. In real life applications, this is a necessary condition for an effective 

communication between analysts and coaching staff. 
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4. CONCLUSIONS 

Evaluating the shooting performance is a relevant topic in basketball analytics. In this thesis, I 

examined the use of different machine learning methods to assess the shooting performance of 

players or teams in the basketball court by means of the production of graphical representations. 

I presented various analyses, starting from the simpler one and proceeding with others, which 

are deeper and more complex under the statistical point of view. First of all, I descripted the 

basic graphical tools that are commonly used by analysts. One of such graphical tools permits 

to study players’ or teams’ shooting performances in predetermined area of the court. 

Consequently, the key idea is to overcome the previous analysis by evaluating the shooting 

performance in areas that are not determined in advance, but that are obtained basing on data. 

In this way, every player or team has his own partition of the court. Then, I replicated an analysis 

proposed by Paola Zuccolotto, Marica Manisera and Marco Sandri in the paper Basketball 

spatial performance indicators and graph, where the use of classification trees is proposed to 

obtain an optimal partition of the court in rectangles, such that the shooting performance is 

maximally homogeneous within them. Finally, I extended the latter analysis proposing the 

application of random forests and gradient boosting for predicting the scoring probability in 

every point of the court and exploiting the obtained results to produce a court map with areas 

coloured according to the predicted scoring probability. These areas are not constrained to be 

rectangles as in the analysis with classification trees, but they are free-shaped. Considering the 

last analysis, it resulted that gradient boosting performs better than random forests for this 

specific task, because the latter method clearly overfits the data. 

All the proposed tools can be extremely useful for the coaching staff for the definition of game 

strategies: identifying the best shooting spots for each player and developing offensive schemes 

that aim to conclude with well-built shots from those spots, but also observing the opponents 

and developing a defensive strategy with the objective to deny easy shots from their favourite 

areas. Moreover, the development of specific training programmes for each player and the 

comparison between players in scouting are other possible applications. In particular, I 

presented an example of the latter, where the shooting performances of three NBA players 

(Stephen Curry, Damian Lillard and Luka Doncic) are compared. 

The proposed case studies are based on play-by-play data, which are a particular type of data 

that describes the main events happened during a basketball match. A lot of knowledge can be 

gathered from play-by-play datasets, however there is not information about players’ movement 

with and without the ball in their hands, which can be a determinant factor for the evaluation of 
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their shooting performance and for predicting shot outcomes. Several machine learning, 

computer vision and statistical methods can be proposed to solve many problems in basketball 

analytics basing on the so-called tracking data, which are detected by technological devices 

(GPS sensors, cameras, wearable technologies etc.) and contain information about players’ 

movement. Therefore, for future research, it would be interesting to perform analyses for the 

shooting performance evaluation in the basketball court basing on the information provided by 

tracking data.
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