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Bradley Terry

First assume that there are only two outcomes: a home win (H) or
an away win (A)
We model the chances on these outcomes as follows:

PH =
βH

βH + βA
;

PA =
βA

βH + βA
,

where βH is the strength of the home team and βA is the strength of
the away team.
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Possibility of a draw

Of course, in soccer we have also the possibility of a draw, which we
will model as follows:

PH =
βH

βH + d
√
βHβA + βA

;

PD =
d
√
βHβA

βH + d
√
βHβA + βA

;

PA =
βA

βH + d
√
βHβA + βA

,

Exercise: Assume βH is constant. Prove that PD(βA) is maximal for
βA = βH .
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Adding the Home advantage

A first simple addition to this model is adding a home effect. The
strength of the home team is multiplied with h:

PH =
hβH

hβH + d
√
hβHβA + βA

;

PD =
d
√
hβHβA

hβH + d
√
hβHβA + βiA

;

PA =
βA

hβH + d
√
hβHβA + βA

,

5



Disadvantage of the Bradley-Terry Model

It does only consider the outcomes of the matches (Home win,
Draw, away win), but not the scores.
Winning a game by 5-0 or by 1-0 is not the same!
⇒ We will try to model the scores
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Modelling scores

We can indirectly model the outcome of the game by modelling the
home and away score. If GH is the number of goals made by the
home team and GA is the number of goals made by the away team,
then we have

PH = P(GH > GA)

PD = P(GH = GA)

PA = P(GH < GA)
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Poisson distribution

I How to model a number of goals?

I Most used ’count distribution’: Poisson distribution

P(G = g) =
λg

g !
e−λ

where the parameter λ is the mean.

I In this case: λ is the average number of goals scored

8



Soccer scores

Let GH be the number of goals made by the home team and GA the
number of goals scored by the away team, then we have for the
Poisson model:

P(GH = x) =
λxH
x!

e−λH

P(GA = x) =
λxA
x!

e−λA

where λH is the expected number of goals scored by the home team
and λA is the expected number of goals scored by the away team.
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From scores to outcome

If the variables GH and GA are Poisson distributed with parameters
λH and λA, then the distribution of the difference GH − GA is a
known distribution, named the ’Skellam’ distribution. Using this
distribution we can easily compute the chances on every outcome:

PH = P(GH − GA > 0)

PD = P(GH − GA = 0)

PA = P(GH − GA < 0)
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Poisson model

Idea from Maher (1982)

λH = c ∗ βH
βA

λA = c ∗ βA
βH

where βH is again the strength of the home team, βA is the strength
of the away team and c is the expected number of goals for teams
with equal strengths.
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Adding the home effect (bis)

Idea from Maher (1982)

λH = c ∗ h ∗ βH
βA

λA = c ∗ βA
βH

where βH is again the strength of the home team, βA is the strength
of the away team and c is the expected number of goals for teams
with equal strengths.
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Attack and defence strengths

Instead of using one strength parameter per team, we could use
separate parameters for a team’s attacking strength and a teams
defensive strength:

λH = c ∗ h ∗
βH,att
βA,def

λA = c ∗
βA,att
βH,def
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Correlation between home and away score

Consider again the model with one strength parameter per team

λH = c ∗ h ∗ βH
βA

λA = c ∗ βA
βH

There is clearly a (negative) correlation between the home and the
away score.
Should we allow for other types of correlation? ⇒ Bivariate Poisson
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Bivariate Poisson Model
In the simple Poisson model we have

P(GH = x ,GA = y) = P(GH = x) · P(GA = y)

=
λxH
x!

e−λH ·
λyA
y !

e−λA

=
λxHλ

y
A

x!y !
e−(λH+λA)

In the bivariate model, we allow for a positive covariance λC
between GH and GA

P(GH = x ,GA = y) =
λxHλ

y
A

x!y !
e−(λH+λA+λC )

min(x ,y)∑
k=0

(
x

k

)(
y

k

)
k!

(
λC
λHλA

)k
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Bivariate Poisson Model

I The bivariate Poisson distribution is derived from the simple
Poisson distribution as follows: If XH , XA en XC are Poisson
distributed with parameters λH , λA en λC , then GH = XH + XC

en GA = XA + XC are bivariate poisson distributed.

I So the number of goals for both teams now consist out of a
team-specific component and a common component.
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How to determine λC?

We will determine λH and λA as before, for λC we have several
options:

1. λC = bC = constant

2. λC = bC ∗ bH depending on the home team

3. λC = bC ∗ bA depending on the away team

4. λC = bC ∗ bH ∗ bA depending on both teams
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Other ways to model soccer goals?

I One can use other count distributions instead of the Poisson
distribution. (For example the Negative binomial or the Weibull
Count Distribution are used)

I Other ways to model the dependency between home and away
scores?

I We look for a function c for which:

P(GH = x ,GH = y) = c(P(GH = x),P(GA = y))

This kind of functions are called copula (density) functions.
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Maximum Likelihood

I When we know the values of the parameters (βH , βA, h, c ,...)
we can calculate the chances for the outcome of a game

I but how do we get these parameters?

I We can estimate them by using maximum likelihood!

I We look for the optimal parameters using numerical
optimization
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Maximum likelihood Bradley Terry
Imagine we have collected the outcome oi ∈ {H,D,A} of N past
games, including T teams

L(β1, ..., βT , d , h) =
N∏
i=1

P(Oi = oi ).

P(Oi = H) =
hβiH

hβiH + d
√
hβiHβiA + βiA

;

P(Oi = D) =
d
√
hβiHβiA

hβH + d
√
hβiHβA + βiA

;

P(Oi = A) =
βiA

hβiH + d
√
hβiHβiA + βiA

,
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Maximum likelihood Poisson
Let now xiH en xiA be the number of goals scored by the home and
away team.
For example, if the result of the game is 1-2, xiH = 1 and xiA = 2.

L(β1, ..., βT , c , h) =
N∏
i=1

P(GiH = xiH) ∗ P(GiA = xiA).

P(GiH = g) =
λgiH
g !

e−λiH P(GiA = g) =
λgiA
g !

e−λiA

λiH = c ∗ h ∗ βiH
βiA

λiA = c ∗ βiA
βiH

22



Time decay parameter

I How many matches do we consider for our MLE-estimates?

I Is every game equally important?

We introduce a weight such that more recent games have a higher
weight in the maximum likelihood

wtime(ti ) =

(
1

2

) ti

Half Period
,

where ti is the time (in days) that has passed since the game is
played and ‘Half Period’ is a parameter whose value is to be chosen.
(see later)
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When we use the time weights, our likelihood formulas for the
Bradley-Terry and the simple Poisson model change to

L =
N∏
i=1

P(Oi = oi )
wtime(ti ).

L =
N∏
i=1

(P(GiH = xiH)P(GiA = xiA))wtime(ti )
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Importance weights
We could also use weights to give important games more weights
than less important games. For example, if we would consider the
national teams, we could use the weights used by the FIFA:

I World Cup: wimportance = 4
I Confederations Championships (e.g. EC): wimportance = 3
I Qualification matches for tournaments above: wimportance = 2.5
I Friendlies and small tournaments: wimportance = 1

E.g. for Bradley-Terry the likelihood function changes to:

L =
N∏
i=1

P(Oi = oi )
wtime(ti )wimportance .
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Prediction

I Since our models can produce probabilities for (future) soccer
games, it is straightforward that they can be used for prediction.

I We repeatedly estimate our parameters on a number of games
in a certain time period and we then predict the outcome of the
next game.

I We measure if a model is good in predicting by using a loss
function
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loss functions

I Rank Probability Score:

1

N

N∑
i=1

(P(Oi = H)− I(oi = H))2 + (P(Oi = A)− I(oi = A))2

2

The best model is the model with the lowest RPS.
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Results Premier League

Table: Comparison table for the best performing models of each of the
considered classes with respect to the RPS criterion. All of the second
season half English Premier League matches in the period between the
seasons 2000-2001 and 2016-2017 are considered.

Model Class
Parameters
per team

Half Period
best model

Lowest
RPS

Independent Poisson, 1 HP = 200 0.1979
Bivariate Poisson,λC=const. 1 HP = 180 0.1981
Bivariate Poisson,λC=const. 2 HP = 240 0.1986
Independent Poisson 2 HP = 240 0.1988
Bradley-Terry 1 HP = 540 0.2020
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Ranking

Another application of this modelling, is the making of rankings.
Since we have estimated the strengths βi for all teams, we can order
them by (estimated) strength.
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Example ranking national teams

teams points team points

1 Brazil 4.32 11 England 3.15
2 Spain 4.18 12 Uruguay 2.98
3 Germany 4.13 13 Denmark 2.97
4 Argentina 4.13 14 Croatia 2.95
5 France 3.53 15 Sweden 2.93
6 Belgium 3.50 16 Poland 2.92
7 Colombia 3.42 17 Italy 2.91
8 Chile 3.37 18 Peru 2.86
9 Netherlands 3.37 19 Ecuador 2.61

10 Portugal 3.36 20 Switzerland 2.60

131 Luxembourg 1.12 212 Vatican 0.29 31
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