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Applied statistics is about
meeting the challenge of
solving real world
problems
with mathematical tools
and statistical thinking
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"Much fine work in statistics involves
minimal mathematics; some bad work in
statistics gets by because of its apparent

mathematical content.”

David Cox (1981),
Theory and general principle in statistics, JRSS(A), 144, pp. 289-297.
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W. Edwards Deming (1900-1993)

“Tests of variables that affect a process are useful only
If they predict what will happen if this or that variable
IS Increased or decreased.

Statistical theory, as taught in the books, is valid and
leads to operationally verifiable tests and criteria for an
enumerative study. Not so with an analytic problem,
as the conditions of the experiment will not be
duplicated in the next trial.

Unfortunately, most problems in industry
are analytic.”™

*From preface to The Economic Control of Quality of Manufactured product by W. Shewhart, 1931 5
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“Statistics is important because it is conceived as
contributing to a causal understanding ...
Statistics can indicate causality even in the
absence of a mechanistic understanding.

But the traditional self-conception of statistics is
that it can rarely say anything about causality.
This is a paradox.”

Statistikk 50 Arl Some remarks on causality*

Odd O. Aalen

*From a presentation celebrating 50 years to the establishment of a Masters Degree in Statistics in Norway, May 22, 2006 6
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The Quality Ladder

Quality by Design

Process Improvement
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Kenett, R., De Frenne, A., Tort-Martorell, X and McCollin, C. (2008). The Statistical Efficiency Conjecture, in Applying Statistical

Methods in Business and Industry — the state of the art, Greenfield, T., Coleman, S. and Montgomery, R. (editors), Wiley.
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PSE=Practical Statistical Efficiency

PSE=E{R} xT{I} xP{I} xV{PS} xP{S}xV{P}xV {M} xV {D}

PS E com ponent: 1_5 V{D} = Value of the Data actually collected

V{M} = Value of the statistical Method employed
V{P} = Value of the Problem to be solved
P{S} = Probability that the problem actually gets Solved
V{PS} = Value of the Problem being Solved
I m p aCt P{l1} = Probability the solution is actually Implemented
T{l} = Time the solution stays Implemented
E{R} = Expected number of Replications

“1”= not very good, “5” = excellent.

L=Maturity Level on Quality Ladder: 1- 4
1 = Fire fighting (FF), 2 = Inspection (),
3 = Process Improvement (Pl1), 4 = Quality by Design (QbD)

Maturity

10
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The Statistical Efficiency Conjecture

Let PSE = PSE of a specific project.

PSE is a random variable with specific realisations for individual
projects, 1<= PSE <= 58,

E{ PSE } = The expected value of PSE in a given organisation over all
projects.

The Statistical Efficiency Conjecture is linking Expected Practical
Statistical Efficiency with the maturity of an organisation on the Quality

Ladder.
In more formal terms it is stated as: t Maturity ——) Impactt

Conjecture:

Conditioned on the right variable,
E{ PSE } is an increasing function of L

11
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The Statistical Efficiency
Conjecture
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The Seven Layers of a Decision Support for User
Interface Design (DSUID)

The lowest layer — user activity
The second layer — page hit attributes (data)
The third layer — transition analysis (dynamic)
The fourth layer — UPI identification (quant. mp subjective)
The fifth layer — usage statistics (descriptive)
The sixth layer — statistical decision (t-test, BN,...)

The top layer — interpretation

Kenett R.S., Harel A. and Ruggeri, F. (2009). Controlling the Usability of Web Services, International Journal of Software 15
Engineering and Knowledge Engineering, Vol. 19, No. 5, pp. 627-651.
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A: Lines - 4 levels for lines
B: Extensions - 5 levels for regular extension
C:. Smart phones - 6 levels for smart phones

Kenett, R.S. and Raanan, Y. (2010). Operational Risk Management: a practical approach to intelligent data analysis, Wiley. 20
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Statistics from the empirical GoF distribution

Run number Lines Extensions |Smart phones| GoF mean GoF Sid Sth2s 95th 25
1 1 1 1 56. 60941 0.059105706| 56.62155% 57
2 1 1 2 H9. 63072 o.02490878 59 . 62382 59 88322
3 1 1 3 61.82233 0| 61.82233| 61.82233
4 1 1 4 61.58676| 0.,0030564A67| 61.58734| 61.66847
S 1 1 o 61.58476| 0.002951751 61.58734| 61.66847
] 1 1 & 61.82233 0| 61.82233| 61.82233
i 1 2 1 Hh7. 39454 0.048655559 57.39338 L7 75812
8 1 2 2 58.16235| 0.,043181378| 58.16356| 55 48932
9 1 2 3 61.82233 0| 61.82233| 61.82233
10 1 - :- | Bl /a5 N nigs3/s201 BO_35212 O 55919
11 1 0| 61.82233| 61.82233
12 1 1] b1 82233 b1 82233
13 1 B454| 55.29014| 55 76737
14 1 po0oz2| 55 88973 59.20304
15 1 1] 61 82233 61 82233
16 1 0| 61.82233| 61.82233
17 1 0| 61.82233| 61.82233
18 1 0| 61.82233| 61.82233
19 1 . . b877| 54.76769| 55.22726
20 1 n3a1 57 385467 L |
21 1 I I 0| 61.82233| 61.82233
22 1 0| 61.82233| 61.82233
23 1 ES06| 61.58734| 61. 66847
24 1 B3469| 61.58734| 61. 67658
25 1 o 1 61.58135 o.o02950407 Bb1. 57922 61._ 66847
26 1 S 2 61.58483 | 0.,003111372| 61.57922| 61.67658
27 1 S 3 61.5814| 0.,0O0Z2882963| 61.57922| 61.66847
28 1 S 4 61.58221 0.003007665| 61.58734| 61. 66847
29 1 S o 61.58598| 0.,00Z2768952| 61.58734| 61.66847
30 1 L] B b61.82233 1] b1 82233 b1 82233
31 2 1 1 58.63324| 0.,037792725| 58.63446| 55.95804
32 2 1 2 58.39079 | 0.042223195| 58.39521 8. 7367
33 2 1 3 59.87708| 0.025846298| 59.87487| 60.11655
34 2 1 4 55.81579| 0.065592685%| 55.80323| 56.25833
1 - 1 L Rl RP2Z>33 n Rl RZ2233 Rl RZ2233

Classification error

Indicator function of the subset

runs of severities, s, of the set X

ZI(Sii'S'i)(X) ' 1if xe{s:s, =5}

i—1 Oif X%{S:Si 7’—'5.}

From a given
BN one can
generate
simulated
outcomes.
Goodness of fit
(GoF) of a BN
model is
computed using
a distance
measure
between
simulated data
and the real
data

the real data

... the i-th simulated

S.

values of severity

Cornalba, C., Kenett, R.S. and Giudici, P. (2007) Sensitivity Analysis of Bayesian Networks with Stochastic Emulators,

ENBIS-DEINDE proceedings, University of Torino, Turin, Italy,

21
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Analysis: Main effect plots of mean GoF

Main Effects Plot (data means) for GoF mean
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Analysis: Interaction plots of mean GoF

Contour Plot of GoF mean vs Smart phones, Lines
6
GoF
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(<))
g 4 Hold Values
= Extensions 3
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w
2 -
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Lines

A limited number of lines and a limited level for smart

phone is associated with a low mean GoF
23
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Pharmaceutical Development and Manufacturing, Biopharmaceutical Report, ASA Publications, Vol. 18, No. 2, pp. 6-16.
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Equipment and System

Evaluation Importance Level
. . Strongly Strongly ]
The ABC 2010 Annual Customer Satisfaction Survey - disagree agree  Low High
6. The equipment's features and capabilities 1 2 3 4 5 1 2 3 NIA
meet your needs.
7. Improvements and upgrades provide value. 1 2 3 4 5 1 2 3 NIA
8. Qutput quality meets or exceeds expectations. 1 2 3 4 5 1 2 3 N/A
Company: 9. Uptime is acceptable. 1 2 3 4 5 1 2 3 N/A
10. For customers who purchased a system 1 2 3 4 5 1 2 3 N/A
Completed by: during 2010: ABC's equipment proposal met
your requirements
Title/Position: 1. Owner 2. Management 3. Technical Management 4. Technical Sta ‘:‘W Very
L= . ow high
S. Operator 6. Administrator 7. Other, please specify: 11. Overall satisfaction level from the equipment: 1 2 3 4 5
Dear Customer,
Sales Support
For each of the following statements, please select a number indicating the extent of your strongly MSWH aly Importance Level
agreement with the statement concerning your experience with ABC during 2010. Then, under disagree agree Low High
“Importance Level”, select another number indicating the importance of the statement to you. Ifa 12. Verbal promises have been honored. 1 2 3 4 5 1 2 3 N/A
certain statement is not relevant or not applicable, please select N/A. 13. Sales personnel communicate frequently 1 2 3 4 5 1 2 3 N/A
enough with you.
14. Sales personnel respond promptly to requests. 1 2 3 4 5 1 2 3 N/A
15. Sales personnel are knowledgeable about 1 2 3 4 5 1 2 3 N/A
equipment.
Overall Satisfaction from ABC 16. Sales personnel are knowledgeable about 1 2 3 4 5 1 2 3 MNIA
Evaluation market opportunities
Ver Ver
low high Very very
1. Overall satisfaction level from ABC: 1 , s A . 17. Overall satisfaction level from sales support: 1 2 3 4 5
2. Overall satisfaction level from ABC’s 1 2 3 4 5 Technical Support
improvements during 2010: Evaluation Importance Level
Strongly Strongly
disagree agree  Low High
3. s ABC your best supplier? a. Yes 18. Technical support is available when needed. 1 2 3 4 5 1 2 3  NA
b._No 19. The technical staff is knowledgeable. 1 2 3 4 5 1 2 3 NA
Very Very 20. The technical staff is well informed about the 1 2 3 4 5 1 2 3 N/A
unlikely likely latest equipment updates/enhancements.
Would you recommend ABC to other 1 5 21. Parts are available when needed. 1 2 3 4 5 1 2 3 N/A
companies? 22. The remote support care center is valuable 1 2 3 4 5 1 2 3 N/A
and meets your expectations.
23. Problems are resolved within the required time 1 2 3 4 5 1 2 3 MN/A
5. If you were in the market to buy a PRODUCT, 1 2 3 4 5 frame.
how likely would it be for you to purchase an 24. The technical staff is courteous and helpful. 1 2 3 4 5 1 2 3 N/A

ABC product again?

. Overall satisfaction level from technical
support:

Kenett R.S. and Salini S. (2009). New Frontiers: Bayesian networks give insight into survey-data analysis, Quality Progress, 28
pp. 31-36, August.
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Network learning

Constraint-based algorithms

Scored-based algorithms

Robustness
of Network

bnlearn: 1) Grow-Shrink (GS)
algorithm, 2) Incremental
Association (IAMB) algorithm,

3) Interleaved-IAMB (Inter-IAMB)
algorithm, 4) Fast-IAMB (Fast-IAMB)
algorithm, 5) Max-Min Parents and
Children (MMPC) algorithm,

6) ARACNE and Chow-Liu
algorithms, 7) Hill- Climbing (HC)
greedy search algorithm,

8)Tabu Search (TABU) algorithm,
9) Max-Min Hill-Climbing (MMHC)
algorithm and 10) two-stage
Restricted Maximization (RSMAX2)
algorithm for both discrete and
Gaussian networks

Cugnata, F., Kenett, R.S., and Salini, S. (2014). Bayesian Network Applications to Customer Surveys and InfoQ, 32

Procedia Economics and Finance. 17. 3-9.
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Phosphate binder?

Decisions




Risk
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Pt. 2 Pt. S
— - Hospitalization Ratio Hospitalization Ratio
Decision State of Actions \,\ TO0ES 0 1.5 1TDES 015
\ oo0oa 1.5-3 000 15-3
* . 35,54 3-45 2885 3-45
Treat hypercalcemia; Sa84 45-8 E374 35-6
. S48 B -T7.5 G.E59 5. 7.5
* Continue current therapy; 031 75-9 035 75-9
Ca-based * Decrease vitamin D dose to achieve Motalty Bauo Idonality Ratio
Therapy ideal Ca; Decrease Ca-based ... 1A s-E Joes 2t

* Decrease or discontinue vitamin D do- “ias 12-1s 1198 12-15
. 395 15-18 591 15-18
se or Ca-based phosphate binders; . .. 238 18- 21 410 18-21
— - - - 123 24 - 24 057 2124

* Assess nufrition, discontinue Mortality risk relative (.| |[Mortality rick relative (g
phosphate binder if . .. 12230 1. R
Phosphate * Being dietary counseling and restrict 1 OES 2o25 1 063 225
. . . 1.0E-2 2.5 -3 1.0E-3 25-3
binder? dietary phosphate; start or increase . .. 10E2 3-35 1DE3 3-35
10E-3 a5-6 10E-3 3.5-0

* Being short-term Al-based phosphate

binder use. then increase ...

Mortality risk relative (B

Maortality nsk relative (B

* Increase QB;

18200 0O-1
F3e8 1-15
0589 15-2
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Definitions

Ihit number: The software development team that developed the software version
PM: The total number of person months used to develop and test the software version

Escaping Defects: The number of Severity 1-3 defects detected during the first three
months after release of software version divided by PM -the lower the better.

Defect Distribution: The proportion of defects detected during the various internal
testing phases versus defects detected by customers during the first three months
after release of software version -the higher the better.

Effort Variance: The effort variance, in PM, from the budget baseline of the software
version during the release development period

Scope Instability: Represents changes to requirements scoped to the release and
stability of the software development baseline. i.e. number of changed, deleted and
added requirements after scope sign-off date divided by the number of requirements
in the release scope at release sign-off date.

Kenett, R.S. and Baker, E. (2010). Process Improvement and CMMI for Systems and Software, Taylor and Francis, 37
Auerbach CRC Publications
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Unit PM Escaping Defects Defect Distribution Effort Variance Scope Instability
1.0 727 0.31 0.71 -0.03 0.01
1.0 250 1.63 0.37 -0.09 0.66
1.0 773 0.12 0.92 0.04 0.14
1.0 49 0.05 0.89 -0.07 0.14
1.0 52 0.23 0.74 -0.09 0.03
1.0 923 0.08 0.92 -0.04 0.00
1.0 21 1.27 0.52 0.11 0.00
20 7 0.43 0.76 0.00 0.00
2.0 60 0.20 0.61 0.05 0.05
2.0 105 0.40 0.74 0.02 0.15
3.0 747 0.60 0.53 0.31 0.80
3.0 25 1.87 0.57 0.09 0.21
4.0 230 1.27 0.16 0.36 0.00
4.0 553 3.31 0.14 0.92 0.00
4.0 57 0.93 0.66 0.06 0.20
4.0 29 0.75 0.58 -0.10 0.03
4.0 60 0.63 0.66 -0.18 0.73
4.0 16 0.06 0.92 -0.03 0.00
4.0 36 0.90 0.41 0.00 0.00
4.0 37 0.38 0.39 0.09 0.01
4.0 86 0.69 0.73 0.08 0.00
5.0 157 0.31 0.68 0.02 0.57
5.0 182 0.99 0.57 0.12 2.25
50 35 0.46 0.56 0.09 3.46

38



Person months

| ——Plsa00 22%
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2 Scope_Instability s2 00
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> Defect_Distribut....
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Compositional data (CoDa)

« CoDa: vectors of non-negative components showing
the relative importance of a set of parts in a total.

« Sample space: the simplex
with k = 1, 100, 108, 10° (proportions, %, ppm, ppb) .
* The total “k”: Is considered irrelevant, not informative.

SP={xeR,P: X;+X,+ --+Xy =k}

o1 Two principles:
S3: Ternary  scale invariance and
diagram « subcompositional coherence
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A four-hour workshog

‘ :5! i 2 Conference in honor of Corrado Gini

Uniyersitat (Padua, 7-8 September, 2015)
deGirona

Compositional Data (CoDa)
methods in the analysis of
customer surveys

M. Vives-Mestres?!, J.A. Martin-Fernandez!, and R.S. Kenett?

lUniversitat de Girona, Spain; marina.vives@udg.edu

2 KPA Group, Israel; University of Turin, Italy; NYU Center for Risk Engineering, USA

September 8™, 2015
14:30-18:30

http://convegnogini.stat.unipd.it/en/index.php#workshop
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InfoQ(f. X, g) = U(f(X|g))

A specific analysis goal

The available dataset

ight

An empirical method

cC ™ X «

A utility measure

statisticals#@

Information
Quality (InfoQ)

Kenett, R. S., Shmueli, G.. On information quality. Journal of the Royal Statistical Society - Series A: Statistics in Society, 177(1):3-38, 2014. 44



Domain  Analytic
Space Space

© Goal

@)
1

o 7
Information .-

What Quality |

Data Analyéis
Quality Quality
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1.Data resolution

2.Data structure How
3.Data integration

4. Temporal relevance
5.Chronology of data and goal
6.Generalizability

7.0perationalization

8.Communication

# Dimension Note Value Index

1|Data resolution 5 1.0000
2|Data structure 4 0.7500
3|Data integration 5 1.0000
4|Temporal relevance 5 1.0000
5|Generalizability 3 0.5000
6|Chronology of data and goal 5 1.0000
7|Concept operationalization 2 0.2500
8|Communication 3 0.5000

InfoQ Score = 0.68
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Power

Prefix

10°

Giga

1012

Tera

101

Peta

10"

Exa

107"

Zetta

1024

Yotta

* Batch
* Near time
* Real time

* Terabytes

* Records

* Transactions
* Tables, files

Kenett — On Bayesian Networks and InfoQ

Big Data Analytics

InfoQ Dimensions

* Semistructured
* All the above

Russom, P., Big Data Analytics, TDWI Best Practices Report, Q4 2011

© N Ok wWwDhRE

Data resolution

Data structure

Data integration

Temporal relevance
Chronology of data and goal
Generalizability
Operationalization
Communication
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InfoQ Dimension

Data Resolution

Data Structure

Data Integration
Temporal Relevance
Chronology of Dats
and Goal

—— 9@
Generalizability

Operationalization

Communication

Use case InfoQ score

Kenett — On Bayesian Networks and InfoQ

2 Web 3ICT Dimension
1 Mgmt Usability  Risks 4 Biotec 5 Surveys 6 Health 7 Testing score
1 4 5 4 5 4 4 3.50
2 3 5 4 4 5 4 3.71
3 4 4 4 4 5 5 4.09
5 4 4 5 4 5 4 4.40
4 4 5 5 5 5 4 4.54
5 4 4 4 5 5 3 4.22
4 3 4 4 4 5 4 3.96
4 4 5 5 5 4 5 4.54
3.15 3.72 4.47 4.35 4.47 4.73 4.08
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