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Introduction

Tennis is a sport that can be nicely described with a simple
mathematical model.

Assuming that the probability that a player on service wins one
point is independent of the previous points and constant during
the match, the score of a single game, of a single set and of the
whole match can be easily described by a set of homogeneous
Markov chains that forms a sort of Chinese Box (see e.g the
recent book “Analyzing Wimbledon” by Klaassen and Magnus).
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Introduction

However, the assumption that the probability to win any point is
independent of the previous points played and identically
distributed along the match, has been criticised by some authors.

To partially overcome this problem, we propose a simple
modification of the model at the game’s level.
We will assume that during any game there are two different
situations:

the initial points

the, possible, additional points played after the (30:30), score
that in our model coincide with the “Deuce”.
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Introduction

This modelling is suggested by real data, where we see that the
winning probability of the serving player decreases consistently
after the (30,30) score, when he/she is just two points far from
winning or loosing the game.

In the present talk we will apply this model to evaluate the winning
probabilities and the expected number of points played in a game
and in a set.
To perform this computation we will need some additional
ingredients not considered before in the literature.
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Introduction

We will consider separately the games won by the serving player
and those won by the receiver (breaks) and we will be able to
compute explicitly the expected length of any of these four games:
A serves and wins (aA), A serves and loses (aB), B serves and wins
(bB) and B serves and loses (bA).

The computation of these conditional length is motivated by the
need to compute the expected number of points played in a set,
where the exact length of the previous four types of games is
needed.
All the previous results in the literature, concerning the duration of
a tennis set, consider the (expected) number of games needed to
complete a set, which is not enough to determine the exact
(expected) number of points played.
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The Game

We will assume that the probability to win any point by the player
on service depend only on the present score.
In this way the score of a game can be described by a Markov
Chain whose state space can be represented by

{(0, 0), (15, 0), (0, 15), (30, 0), (15, 15), (0, 30), (40, 0), (30, 15),

(15, 30), (0, 40), (40, 15), (15, 40),Deuce,AdvA,AdvB ,WinA,WinB}

but for simplicity we will define the states, in the same order, as

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}.
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The Game

In order to determine the transition probabilities pi ,j , i , j ∈ S , the
usual assumption is that the probability p to win any point by the
player on service is independent of the score and constant during
the game.

As empirical data confirm, the estimated winning probabilities
before and after the “Deuce” are very different.
For this reason, we will consider a second parameter p̄, that will be
the probability to win a point after the Deuce by the player on
service and, to avoid trivial cases, we will assume that both p and
p̄ belong to (0, 1).
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Graph of a game
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Winning probabilities

The winning probability of the game for the player on service
coincides with the absorption probability in the state 16 of the
previous Markov chain starting from state 1, which can be
obtained as the minimal, non negative solution of{

hi =
∑

j∈S pijhj for 1 ≤ i ≤ 15

h16 = 1 , h17 = 0 .

The solution can be easily calculated and we obtain that

h1 = p2

[
5p2 − 4p3 + 4(p − 1)2pp̄ − 2(p − 1)2p̄2(p(4p̄ − 2)− 2p̄ − 3)

2p̄2 − 2p̄ + 1

]
.
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Winning probabilities

Remark

Denoting by G (p, p̄) := h1, by A and B the two players, and by
PG
xY the probability that the player Y wins a game when X serves,

we obtain that:

PG
aA = G (pA, p̄A) , PG

aB = G (1− pA, 1− p̄A)

PG
bB = G (pB , p̄B) , PG

bA = G (1− pB , 1− p̄B)
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Winning probabilities

Table: Winning probabilities of a game

p̄
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.001 0.004 0.011 0.021 0.034 0.049 0.062 0.071 0.078 0.081
0.2 0.011 0.022 0.043 0.076 0.119 0.165 0.204 0.233 0.252 0.263
0.3 0.040 0.061 0.099 0.158 0.234 0.312 0.378 0.425 0.455 0.472
0.4 0.102 0.132 0.185 0.264 0.363 0.464 0.549 0.607 0.643 0.663
0.5 0.206 0.242 0.302 0.391 0.500 0.609 0.697 0.758 0.794 0.812
0.6 0.357 0.392 0.451 0.535 0.636 0.736 0.815 0.868 0.898 0.913
0.7 0.545 0.575 0.622 0.688 0.766 0.842 0.901 0.939 0.960 0.969
0.8 0.748 0.767 0.795 0.835 0.881 0.924 0.957 0.978 0.989 0.993
0.9 0.922 0.929 0.938 0.951 0.965 0.979 0.989 0.995 0.998 0.999
1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Winning probabilities
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Expected length

Since in the next section we will need to know the expected length
of a game won by the player on service or receiving the serve, we
have to consider separately the expected length of the paths
starting from 1 and ending in 16 or 17, respectively.

The computation can be easily performed defining the
conditioned Markov chain given to the event “The player on
service wins the game”.
Its transition matrix P ′ on the state space {1, . . . , 16} is given by:

p′ij = pij
hj
hi

with i , j ∈ {1, . . . , 16},
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Expected length

In order to compute this (conditional) expected duration, it will be
sufficient to solve the linear system:{

ki = 1 +
∑

j∈S ′ p′ijkj for 1 ≤ i ≤ 15

k16 = 0 .

A simple computation gives
k1 = 4

[
p̄2(9− 4p̄ + 12p̄3) + p3(−5 + 26p̄ − 56p̄2 + 60p̄3 − 32p̄4)

−2pp̄(−3 + 17p̄ − 14p̄2 + 6p̄3 + 12p̄4)
][

(1− 2p̄ + 2p̄2)(2p̄2(3 + 2p̄)

−4pp̄(−1 + 4p̄ + 2p̄2)− 4p3(1− 3p̄ + 3p̄2) + p2(5− 18p̄ + 24p̄2 + 4p̄3))
]−1

+
[
4(p2(6− 36p̄ + 89p̄2 − 92p̄3 + 48p̄4 + 12p̄5))

][
(1− 2p̄ + 2p̄2)(2p̄2(3 + 2p̄)− 4pp̄(−1 + 4p̄ + 2p̄2)− 4p3(1− 3p̄ + 3p̄2)

+p2(5− 18p̄ + 24p̄2 + 4p̄3))
]−1
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Expected length

Remark

Defining F (p,p̄) := k1 and using the same notation as before, we
get the expected length of the four types of outcomes of a game

kGaA = F (pA, p̄A) , kGaB = F (1− pA, 1− p̄A)

kGbB = F (pB , p̄B) , kGbA = F (1− pB , 1− p̄B).
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Expected length

Table: Expected duration of a game

p̄
p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 5.912 6.804 7.521 8.064 8.332 8.274 7.959 7.525 7.088 6.709
0.2 5.388 6.268 7.100 7.739 8.075 8.064 7.783 7.374 6.956 6.591
0.3 5.108 5.792 6.607 7.310 7.721 7.774 7.542 7.172 6.783 6.441
0.4 4.938 5.423 6.117 6.811 7.274 7.395 7.226 6.906 6.558 6.247
0.5 4.814 5.141 5.673 6.283 6.750 6.923 6.821 6.564 6.269 6.000
0.6 4.708 4.917 5.285 5.760 6.171 6.366 6.325 6.138 5.907 5.690
0.7 4.599 4.721 4.948 5.265 5.572 5.745 5.746 5.629 5.469 5.316
0.8 4.471 4.531 4.644 4.812 4.988 5.101 5.116 5.059 4.972 4.886
0.9 4.293 4.311 4.345 4.396 4.453 4.492 4.500 4.484 4.458 4.431
1.0 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
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Expected length
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Expected length

Remark

Note that these are conditional lengths and this fact justifies some
unexpected values included in the table. For example the length is
maximum for p ≈ 0 and p̄ ≈ 0.5, which can be justified by the fact
that, conditioned on the event {A wins}, the path that arrives to
the state 16 almost never reaches this state without reaching first
the Deuce and here the second parameter close to 0.5 makes this
part of the game as long as possible.
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Real data

We consider the matches between Rafael Nadal, Novak Djokovic
and Roger Federer in the period 2009–2014.

Table: Number of Matches, Sets and Games

Players Match Set Game

Nadal vs. Djokovic 22 63 610
Nadal vs. Federer 17 46 448
Federer vs. Djokovic 18 51 486

Data are obtained from www.tennis.earth.com

23 of 37



Real data

First, we estimate the probabilities of winning a point after serving
for each of the three players, considering also the possible
opponent ability. Therefore, we calculate the relative frequencies of
winning a point over all the played points, and also splitting the
points in a pre-deuce play and post-deuce play. Remember also
that PG

aB = 1− PG
aA.

Table: Probabilities of winning a game: Nadal (A) vs. Djokovic (B)

p p̄ h1 ĥ1

pA = 0.59459 p̄A = 0.59459 PG
aA = 0.72434 0.71237

pB = 0.62811 p̄B = 0.62811 PG
bB = 0.79119 0.75563

pA = 0.60500 p̄A = 0.57190 PG
aA = 0.71529 0.71237

pB = 0.63881 p̄B = 0.59705 PG
bB = 0.77704 0.75563
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Real data

Similarly, we estimate the expected length of the game using the
proposed model (k1) and compare it with the mean duration of a
game calculated on the played games recorded in the data (k̂1).
The two parameter model results are generally closer to the
empirical evidence, even if this is not true all the times.

Table: Expected length of a game: Nadal (A) vs. Djokovic (B)

p p̄ k1 k̂1

pA = 0.59459 p̄A = 0.59459 KG
aA = 6.39459 6.28910

pB = 0.62811 p̄B = 0.62811 KG
bB = 6.20935 5.71368

1− pA = 0.40541 1− p̄A = 0.40541 KG
aB = 6.81638 7.01176

1− pB = 0.37189 1− p̄B = 0.37189 KG
bA = 6.77603 6.75000

pA = 0.60500 p̄A = 0.57190 KG
aA = 6.30753 6.28910

pB = 0.63881 p̄B = 0.59705 KG
bB = 6.12896 5.71368

1− pA = 0.39500 1− p̄A = 0.42810 KG
aB = 6.99899 7.01176

1− pB = 0.36119 1− p̄B = 0.40295 KG
bA = 7.02878 6.75000
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Real data

Remark

At the end, the assumption of a changing point probability
depending on the score seems to be a good description of what is
happening in a real tennis match: the probability of winning a
game determined by the model is almost all the times closer to the
empirical estimates and the average length estimate is most of the
times closer than the one calculated with a constant point
probability.
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The Set

Let us now consider a set of tennis which may end also with a
tiebreak. In this case we can calculate explicitly the probability
that the final score of the set will be one of the seven possible pairs
(6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (7, 5), (7, 6) and we derive the
results for the remaining cases easily.

To simplify the notation, if player A (resp. B) starts serving in the
first game, we will denote by Pa (resp. Pb) the conditional
probability given this event. We will perform these calculations in
order to evaluate the average number of points needed to complete
a tennis set, and the present probabilities represent a basic
ingredient.
Let us start with the Tiebreak.
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Let us start with the Tiebreak.
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The Tiebreak

The tiebreak is a special type of game. It is played when the score
in a set is equal to (6, 6) in order to determine the winner of the
set. In the tiebreak 7 points, with a two-point advantage, are
needed to win the game.

The service rotate every two points, except for the first service,
played by the player who started serving in the first game of the
set.
If we assume that the probabilities to win a point for the player on
service are fixed during the tiebreak, the tiebreak itself can be
model as a Markov chain, with 53 states.
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The Tiebreak

In Newton and Keller (2005), the winning probabilities of the
tiebreak, that we do not report here, are calculated by a recursive
approach.

On the contrary, the expected number of points played is not
computed. The expected number of points played to complete the
tiebreak is equal to

k1 = [−2− 30p2
B + 71p3

B − 94p4
B + 73p5

B − 30p6
B + 5p7

B+
+pApB(−115 + 541pB − 1166p2

B + 1483p3
B − 1124p4

B + 465p5
B − 80p6

B)+
+p2

A(−25 + 500pB − 2650p2
B + 6514p3

B − 8716p4
B + 6557p5

B − 2600p6
B+

+420p7
B) + p3

A(40− 885pB + 5730p2
B − 16276p3

B + 23769p4
B − 18398p5

B+
+7000p6

B − 980p7
B) + p4

A(−25 + 792pB − 6224p2
B + 20289p3

B − 32532p4
B+

+26320p5
B − 9660p6

B + 1050p7
B) + p5

A(4− 347pB + 3353p2
B − 12428p3

B+
+21784p4

B − 18466p5
B + 6510p6

B − 420p7
B) + p6

A(1 + 58pB − 716p2
B+

+2996p3
B − 5698p4

B + 5040p5
B − 1680p6

B)]/[−pB + pA(−1 + 2pB)]
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Winning probability

Let us now consider the whole set. The computation of the
winning probabilities is a little bit tedious, but with a compact
notation it will be possible at least to write down the formulas in
an efficient way.

The final score of the set will described by a five dimensional
random vector X , where X = (x0, x1, x2, x3, x4) summarizes who
starts serving (0 for A and 1 for B) and the number of aA, aB, bB
and bA games, respectively.
So, given A starts serving, the event {(A,B) = (6, 0)} will coincide
with {X = (0, 3, 0, 0, 3)}, which indicates that the set finished with
three aA games and three bA games, while {(A,B) = (6, 1)} will
coincide with {X = (0, 4, 0, 1, 2)} ∪ {X = (0, 3, 1, 0, 3)} and so on.
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Winning probability

We get

Pa[(A,B) = (6, 0)] = P[X = (0, 3, 0, 0, 3)] = (PG
aA)3(PG

bA)3

and with a more compact notation

Pa[(6, 1)] = 3 · P[(0, 4, 0, 1, 2)] + 3 · P[(0, 3, 1, 0, 3)]

= 3[(PG
aA)4PG

bB(PG
bA)2] + 3[(PG

aA)3PG
aB(PG

bA)3]

and so on for all the other possible scores.
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Expected length
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Expected length

Let D be the random length of a set; we will evaluate its
expectation by Ea[D] = Ea[Ea[D|(A,B)]], where Ea[D|(A,B)] will
denote the conditional duration given a specific final score and the
fact that player A starts serving.

Denoting Ea[D|(i , j)] = Ea[D|(A,B) = (i , j)], we have:

Ea[D] =
∑4

i=0 Ea[D|(6, i)] · Pa[(A,B) = (6, i)] + Ea[D|(7, 5)] · Pa[(A,B) = (7, 5)]
+
(
Ea[D|(7, 6)] + Ea[D|(6, 7)]

)
· Pa[(A,B) = (6, 6)]

+
∑4

i=0 Ea[D|(i , 6)] · Pa[(A,B) = (i , 6)] + Ea[D|(5, 7)] · Pa[(A,B) = (5, 7)].

where:

Ea[D|(6, 0)] · Pa[(A,B) = (6, 0)] = P[3, 0, 0, 3](3kGaA + 3kGbA)

and so on.

33 of 37



Expected length

Let D be the random length of a set; we will evaluate its
expectation by Ea[D] = Ea[Ea[D|(A,B)]], where Ea[D|(A,B)] will
denote the conditional duration given a specific final score and the
fact that player A starts serving.
Denoting Ea[D|(i , j)] = Ea[D|(A,B) = (i , j)], we have:

Ea[D] =
∑4

i=0 Ea[D|(6, i)] · Pa[(A,B) = (6, i)] + Ea[D|(7, 5)] · Pa[(A,B) = (7, 5)]
+
(
Ea[D|(7, 6)] + Ea[D|(6, 7)]

)
· Pa[(A,B) = (6, 6)]

+
∑4

i=0 Ea[D|(i , 6)] · Pa[(A,B) = (i , 6)] + Ea[D|(5, 7)] · Pa[(A,B) = (5, 7)].

where:

Ea[D|(6, 0)] · Pa[(A,B) = (6, 0)] = P[3, 0, 0, 3](3kGaA + 3kGbA)

and so on.

33 of 37



Expected length

Table: Expected (conditional) duration of a set that ends (6,4)

pA
pB 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.3 58.48 60.22 61.77 63.01 63.84 64.21 64.10 63.55 62.63
0.35 60.02 61.79 63.35 64.58 65.36 65.64 65.41 64.71 63.64
0.4 61.36 63.14 64.69 65.86 66.55 66.70 66.34 65.50 64.28
0.45 62.38 64.15 65.64 66.72 67.29 67.31 66.80 65.82 64.47
0.5 62.98 64.70 66.10 67.06 67.50 67.39 66.74 65.63 64.17
0.55 63.12 64.75 66.03 66.86 67.16 66.91 66.14 64.92 63.36
0.6 62.79 64.30 65.45 66.13 66.29 65.92 65.03 63.72 62.11
0.65 62.03 63.40 64.40 64.94 64.97 64.49 63.51 62.14 60.50
0.7 60.90 62.12 62.97 63.38 63.31 62.73 61.69 60.30 58.68

34 of 37



Djokovic vs. Federer

scoreA scoreB freq kempirical k(p,p) k(p,p̄)

1 6 0 1 35.00 38.85 38.69
2 6 1 2 43.50 44.76 44.60
3 6 2 1 40.00 50.71 50.58
4 6 3 4 53.75 56.71 56.61
5 6 4 6 65.67 62.82 62.81
6 7 5 4 73.50 75.45 75.50
7 0 6 3 37.00 38.65 39.53
8 1 6 1 36.00 44.59 45.29
9 2 6 7 48.43 50.57 51.13

10 3 6 9 54.81 56.60 57.03
11 4 6 2 64.61 62.76 63.09
12 5 7 4 75.30 75.38 75.78
13 6 6 7 82.92 88.14 88.22

Table: Expected length: Federer(A) - Djokovic(B)
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Djokovic vs. Federer 2015

Wimbledon Final on 12 July 2015

First set: (7,6) with 74 points played (estimate 88.22);

Second set (6,7) with 102 points played (estimate 88.22);

Third set (6,4) with 55 points played (estimate 63.09);

Fourth set (6-3) with 55 points played (estimate 57.03).

Note that
74 + 102

2
= 88
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Conclusion

Thank you!
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