
EVALUATION OF THE CURRENT
STATE OF FOOTBALL MATCH
OUTCOME PREDICTION MODELS

Thiebe SLEEUWAERT
Student ID: 01302061

Promotor: Prof. Dr. Christophe Ley
Tutor(s): Prof. Dr. Christophe Ley

A dissertation submitted to Ghent University in partial fulfilment of the requirements for the

degree of Master of Science in Statistical Data Analysis.

Academic year: 2019 - 2020

The author and promoter give permission to consult this master dissertation and to

copy it or parts of it for personal use. Every other use falls under the restrictions of

the copyright, in particular concerning the obligation to mention explicitly the source

when using results of this master dissertation.

Gent, September 4, 2020

The promotor,

Prof. Dr. Christophe Ley

The author,

Thiebe SLEEUWAERT

ACKNOWLEDGEMENTS

First and foremost, I would like to thank the promotor of this master dissertation, Prof.

Dr. Christophe Ley, for allowing me to work on this exciting subject. In these un-

usual times of the coronavirus pandemic, it was not always easy to discuss some ap-

proaches and results with your fellow students or professors. Still, Prof. Dr. Christophe

Ley adapted to this situation and granted me the guidance I needed.

Secondly, I would like to thank both Prof. Dr. Lars Magnus Hvattum and Dr. Hans Van

Eetvelde. Prof. Dr. Lars Magnus Hvattum provided the necessary data to include the

plus-minus ratings in this thesis, and Dr. Hans Van Eetvelde shaped this data in the

right format to work with.

Last but not least, I would like to thank everyone that made my unusual educational

path throughout the university of Ghent possible. Starting out in 2013 as a bachelor

student in biology and finishing in 2020 as a MSc in Statistical Data Analysis.

ii

CONTENTS

Acknowledgements i

Contents v

Abstract vii

1 Introduction 1

1.1 A brief history of sports betting . 1

1.2 Literature review . 2

1.2.1 Goal-based models . 2

Independent Poisson . 3

Dependent Poisson . 3

Skellam distribution . 4

1.2.2 Result-based models . 4

Regression approaches . 5

Thurnstone-Mosteller and Bradley-Terry models 5

Machine learning techniques . 5

1.3 Football leagues . 6

1.3.1 English Premier League . 7

1.4 Scoring . 7

1.4.1 Ranked probability score . 8

1.4.2 Brier score . 9

1.4.3 Ignorance score . 9

1.5 Problem statement . 10

1.6 Objectives . 10

2 Methods 11

2.1 Protocol . 11

2.2 Data . 12

2.3 Models . 12

2.3.1 Naive models . 12

Uniform . 12

Frequency . 13

2.3.2 Logit regression models . 13

ELO based models . 13

Plus-minus based models . 15

2.3.3 Poisson based models . 18

Independent Poisson . 18

Bivariate Poisson . 19

2.3.4 Weibull count model . 20

2.3.5 Machine learning models . 23

Data . 23

Random Forest . 25

Gradient boosting . 27

2.3.6 Hybrid random forest model . 28

Data . 29

3 Results 31

3.1 General results . 31

3.2 ELO based models . 32

3.3 Plus minus ratings . 33

3.4 Poisson based models . 33

3.5 Weibull count . 34

3.6 Machine learning models . 34

3.7 Hybrid model . 34

4 Discussion 39

4.1 ELO based models . 39

4.2 Plus minus ratings . 40

4.3 Weibull count . 41

4.4 Machine learning models . 42

4.5 Hybrid models . 43

4.6 Practical implications . 43

iv

References 46

Appendix A Appendix 51

A.1 Code for the scoring rules . 51

A.2 Code for the ELO based models . 53

A.2.1 basic ELO . 53

A.2.2 Goal-based ELO . 59

A.3 Code for the plus-minus models . 65

A.3.1 Plus-minus . 65

A.4 Code for the Poisson based models . 79

A.4.1 Independent Poisson . 79

A.4.2 Bivariate Poisson . 84

A.5 Code for the Weibull count model . 89

A.5.1 Weibull count . 89

A.6 Code for the machine learning models . 96

A.6.1 Random forest Baboota . 96

A.6.2 Gradient boosting . 99

A.7 Code for the hybrid models . 104

A.7.1 Random forest Groll . 104

A.7.2 Hybrid random forest . 110

v

vi

ABSTRACT

Sports betting knows a long history and has always excited the fans. In recent times,

football is one of the most popular sports worldwide. Thus the forecasting of football

matches is prevalent. Aside from betting, forecasting the outcome of football matches

is also relevant for sports journalists and decision-makers within the sport. Many

statistical models have been proposed to predict football match outcomes. These

models usually incorporate or estimate the strengths of the opposing teams relative

to each other. Two main types of models that predict football matches are recognised,

namely the result-based and goal-based approaches.

The result-based models predict the outcome classes (homewin/draw/awaywin) of the

football matches directly. A simple example of these result-based models is the or-

dered logistic regression. At the same time, more advanced methods include machine

learning techniques, such as random forest classification.

The goal-based alternatives first estimate or assume a suitable distribution for the

goals scored by the opposing teams. From those distributions, the outcome classes

are then derived. Simple examples include the independent Poisson model, and more

advanced examples use machine learning techniques, such as the random forest re-

gression model.

Many models are conducted on different scales. The first scale is how various scholar

use different scoring rules to evaluate the models, which makes it challenging to

interpret the results over multiple articles. A second scale is that various scholars

evaluate their models on diverse leagues. Diverse leagues have distinct competitive

levels, which influence the randomness and predictability of the matches. The last

scale is how various scholars use vastly different training and testing protocols.

We aim to compare the performance of the current literature, by using a mixture of

both simple and more complex models, from both the result-based and goal-based ap-

proaches. To circumvent the problems of different scales, we first bring all the models

on a uniform training and testing procedure. Secondly, three essential scoring rules

(ranked probability score, Brier score and ignorance score) are used to evaluate and

rank the performance of the included models. The data for all the models originates

from the English premier league, which circumvents the problem of using diverse

leagues.

In total, we compared 12 models to each other: two naive methods, named the uni-

form and frequency model, three order logit regression approaches, from which two

were based on the ELO rating system and one based on the plus-minus rating system,

three goal-based models, namely the independent Poisson, the bivariate Poisson and

Weibull count model and four machine learning models, namely two random forest ap-

proaches, a gradient boosting approach and a hybrid random forest approach. From

the two random forest models, one used a result-based approach and the other a

goal-based approach.

Our results show that more sophisticated machine learning models have better pre-

dictions compared to more simple alternatives. In particular, the gradient boosting

model from Baboota and Kaur (2019) had the best performance overall the scoring

rules. For this model, we report an ignorance score of 0.933, a Brier score of 0.353

and a ranked probability score of 0.132. We were not able to distinguish between

the performances of the result-based and goal-based models. However, goal-based

models hold the most promising results. Our results also illustrate the importance

of informative and qualitative features, e.g. the models by Baboota and Kaur (2019)

had a mixture of both historical features and features that captured the recent perfor-

mance of the team.

Although our included models cover some key contributions and recent additions to

this field of statistical modelling, there are still a lot more models remaining. We

suggest that instead of creating new and highly sophisticated models and features,

the scholars in this field should focus on ensembling established models and use

comparative studies to rank the current literature.

viii

CHAPTER 1

INTRODUCTION

In this chapter, the first section gives a brief introduction to the history of sports bet-

ting. The following section presents a summary of the current literature concerning

football match prediction models. After that, a section dedicated to the most popu-

lar football leagues and scoring rules is given. Finally, the last section specifies the

problem statement and objectives.

1.1 A brief history of sports betting

Sports betting and sports forecasting have been around for as long as sports events

have existed. Records of sports betting go back as far as 2000 years ago. It originates

from the ancient Greeks who used to bet on athletic competitions during the Olympics

and from the ancient Roman empire where betting on gladiator fights occurred. In

those empires, sports betting eventually became legal and consequently spread to

neighbouring kingdoms. During medieval times, religious leaders abolished sports

betting, which forced it to stay underground, where it continued to grow in popularity

(Milton, 2017).

Later in the United Kingdom, sports betting became again increasingly popular and

mainstream in the form of outcome betting on horse races. People could place their

bets through bookmakers, or so-called "bookies". Presumably, the first bookmaker

in the United Kingdom opened in the 1790s (Munting, 1996). Throughout the 20th

century, multiple countries legalised sports betting again, e.g. 1931 in Nevada and

1961 in The United Kingdom. In 1994, the country Antigua and Barbuda passed laws

that allowed enterprises to apply for online betting licenses and so the modern form

of online sports betting was born (RightCasino, 2014).

In recent times, football (or soccer) has become one of the most popular sports in

the world, so sports betting on football matches is also prevalent. Betting on football

matches is estimated to take up 70% of the sports betting market (Keogh and Rose,

2013). The most popular form of betting is outcome betting, where the aim is to

predict which of the two competing teams will win the match.

1.2. LITERATURE REVIEW

The prediction of which team will win the match excites football fans all around the

world. Online bookmakers have created a business out of this excitement and made it

into a vast and competitive industry. The prediction of football match outcomes also

gives valuable insights for sports journalists and decision-makers within the sport. The

following section gives a review of the current literature concerning the prediction of

football match outcomes.

1.2 Literature review

There are numerous studies regarding the prediction of football match outcomes. Ste-

fani (1977) predicted football matches by using a least-squares model that rated the

strengths of both competing teams relative to each other. The trend of first estimat-

ing the relative strengths of the competing teams is still present in numerous recent

studies. Estimating the relative strength of a team can be done by a multitude of

methods and is usually conducted on a team-based level. Recently, with the increase

in available data, researchers have rated players on an individual-level and derived

the ratings of a team from those individual player ratings (Arntzen and Hvattum,

2020).

Most statistical models that aim to predict the results of football matches are cate-

gorised under two main types. The first type of models aims to estimate the distri-

bution of the goals for both competing teams. From those distributions, the outcome

classes (win/draw/loss) are then indirectly derived. We will refer to these types of

models as goal-based models. The second type of statistical models aims to predict

the outcome classes directly. We will refer to these types of models as result-based

models. The following subsections give an overview of the methods that hold notori-

ety in this field.

1.2.1 Goal-based models

Goal-based models aim at estimating the goal distribution of the opposing teams.

These models first assume a suitable count distribution for the football goals scored

by each team. One of the most frequently used approaches assumes that the goals

follow a Poisson distribution.

2

CHAPTER 1. INTRODUCTION

Independent Poisson

The independent Poisson model, first proposed by Maher (1982), assumes that the

number of goals scored by each team follows a Poisson distribution and that these

distributions are independent from each other (Katti and Rao, 1968). The following

formula gives the Poisson density function:

P(X = |λ) =
λ

!
e−λ (1.1)

This formula shows the probability of observing x number of goals given λ, with λ

equal to the expected number of goals for a given team. We will refer to this param-

eter λ as the rate intensity parameter.

Most statistical models first estimate λ by constructing it to represent the relative

strengths of the competing teams. For example, Ley et al. (2019) used λ,m = ep(c+

(r+h)− rj) to estimate this parameter, where r and rj represent the relative strengths

of respectively the home and away team, and h represents the effect of playing as

the home team. Chapter 2 gives a more thorough explanation of this model.

Dependent Poisson

Experts in the field mostly agree that the assumption of independence between the

goal distributions of both competing teams is flawed. These goal distributions have

some apparent dependence between them, since the estimation of the λ parameters

usually involves the relative strengths of both competing teams (Ley et al., 2019).

Additionally, in team sports, it is reasonable to assume that the goals made by each

team are dependent since both teams interact during a match (Karlis and Ntzoufras,

2003).

Dixon and Coles (1997) extended the basic independent Poisson model by including

an indirect correlation term between the goal distributions of the competing teams.

Dixon and Coles (1997) identified this correlation to be slightly negative. The cor-

relation term is indirect since it ignores the direct correlation between the intensity

parameters λ of the opposing teams.

Karlis and Ntzoufras (2003) used a bivariate Poisson model with a direct dependence

term between the goal distributions of the competing teams. This bivariate Poisson

model has the advantage that each goal distribution still follows a Poisson distribution

marginally. A deeper explanation is given in section 2.3.3 - Bivariate Poisson.

3

1.2. LITERATURE REVIEW

There is a multitude of other methods available which introduce some form of depen-

dence to the basic independent Poisson model. Some examples include McHale and

Scarf (2011) who extended the independent Poisson with copula dependent struc-

tures. Boshnakov et al. (2017) presented a Weibull interval-arrival-time-based count

process with a copula to model the number of goals for each team. We will discuss this

model in more detail in section 2.3.4 - Weibull count model. The Weibull count model,

and many other models, assume different distributions to model the goals made by

the opposing teams. Some other examples include negative-binomial distributions,

gamma-Poisson distributions and zero-inflated-Poisson distributions.

Skellam distribution

One of the advantages of using Poisson based models is that the Skellam distribution

can be derived from it (Skellam, 1946). The Skellam distribution, or Poisson difference

distribution, is the discrete probability distribution of the difference between two Pois-

son random variables (Ley et al., 2019). If we consider GDm = G,m−Gj,m as the differ-

ence between the expected goals scored by team i and team j during match m, then

the probability of a win of team i over team j is calculated as p(GDm) > 0. The proba-

bility of a draw and loss is calculated as respectively p(GDm) = 0 and p(GDm) < 0.

1.2.2 Result-based models

Although modelling the goal distributions is the most frequently used approach to

predict football match outcomes, other types of statistical models with this aim exist.

Namely, result-based models that directly predict the outcome classes. These models

usually apply some form of ordered logit or probit regression. Recently, with the

increase in available data and advanced computational algorithms, other types of

result-based models have been proposed.

Directly modelling the outcomes does not indicate anything significant about the esti-

mated goal difference between teams, which makes these result-based models milder

in their assumptions and usually they have fewer parameters to estimate (Egidi and

Torelli, 2020). A potential downside of these models is the overestimation or underes-

timation of the relative strengths of the competing teams since these models do not

include the actual goal difference to derive these strengths (Egidi and Torelli, 2020).

4

CHAPTER 1. INTRODUCTION

Regression approaches

One of the earliest articles concerning result-based models, comes from Koning (2000),

where a probit regression model was used to estimate the outcome classes directly.

Goddard (2005) also used a probit regression model and compared it to the bivari-

ate Poisson regression models. The article reports that the best performance was

achieved by a hybrid model that combined a result-based dependent variable with

goal-based lagged performance covariates. However, the differences among the

models were small, and thus both approaches are considered relevant.

Hvattum and Arntzen (2010) used an ordered logit regression on the difference of

the opposing teams ELO ratings and reported that the predictive performance of

this model worked better than the result-based models of Goddard (2005). Hvattum

(2017) reports that these logit regression models had difficulties predicting draws. To

circumvent this problem, Egidi and Torelli (2020) used multinomial regression mod-

els with subtracted factors to inflate the probability of draws. They also compared

goal-based and result-based approaches and found that the multinomial regression

models were slightly lower in predictive performance when looking at the Brier score

as a scoring rule, compared to the goal-based alternatives. However, the differences

were again insignificant.

Recently, Arntzen and Hvattum (2020) also used an ordered logit regression model

based on the plus-minus ratings of the players. The vast increase in data availability

has made it possible to estimate such individual player rating. The authors report

that the ordered logistic regression model based on the plus-minus ratings outper-

forms the ordered logistic regression model based on the team-based ELO ratings.

However, when both covariates are combined, the predictive performance is signifi-

cantly enhanced.

Thurnstone-Mosteller and Bradley-Terry models

Both Thurnstone-Mosteller (Mosteller, 2006; Thurstone, 1927) and Bradley-Terry (Bradley

and Terry, 1952) type models where used successfully by Ley et al. (2019) to directly

model and predict football outcome classes. These models predict the outcomes of

pairwise comparisons by using latent variables.

Machine learning techniques

Recently, machine learning techniques have been used to predict the outcome classes

of football matches directly. Joseph et al. (2006) showed that Bayesian nets out-

5

1.3. FOOTBALL LEAGUES

performed other supervised machine learning classification models such as decision

trees, naive Bayes and k nearest neighbours. Constantinou et al. (2012) proposed a

Bayesian network to predict the outcome classes of a match. In a follow-up study,

Constantinou and Fenton (2013) illustrated that a new ranking system, called the pi-

ratings, incorporated in their Bayesian network model, significantly outperforms the

ELO ratings. Groll et al. (2018) used a random forest with multiple informative co-

variates to predict the goals scored by the opposing teams. These estimates where

then used as the intensity parameters λ for the Poisson distributions of the oppos-

ing teams, and used to derive the outcome class probabilities. Groll et al. (2019)

expanded this random forest model to a hybrid random forest model, where first the

relative strengths of the competing teams were estimated based on a Poisson max-

imum likelihood approach. Then secondly these relative strengths were used in a

random forest model, combined with other covariates from Groll et al. (2018), to es-

timate the goals of the opposing teams, from which the outcome class probabilities

were again indirectly derived. Baboota and Kaur (2019) used the gradient boosting,

naive Bayes, linear support vector machine, RBF support vector machine and random

forest algorithm to estimate the outcome distributions directly. The article reports

that the gradient boosting algorithm outperformed all other models.

The performance of statistical models is usually only evaluated on a single football

league. The following section gives a brief overview of the most popular and impor-

tant football leagues. Another issue is that different authors use diverse scoring rules

to evaluate the performance of their statistical models. After the section about the

football leagues, a section dedicated to the various scoring rules is given.

1.3 Football leagues

There are many football leagues throughout the world. Some of the most competi-

tive and popular include the English - Premier League, the German - Bundesliga and

the Spanish - La Liga. There are also matches between national teams organised

by international football federations, such as the International Federation of Associ-

ation Football (FIFA), and FIFA confederation such as the Union of European Football

Associations (UEFA). These international federations organise football tournaments

between nations, usually yearly or over multiple years, e.g. the FIFA World Cup tour-

nament takes place every four years and is the most famous international football

championship (Suzuki et al., 2010).

Due to the immense popularity and highly competitive level of the English Premier

League, we will include the data from this domestic league in this master dissertation.

6

CHAPTER 1. INTRODUCTION

1.3.1 English Premier League

The English Premier League is the most famous football league worldwide and is con-

sidered to be of the highest competitive level. It consists of 20 teams that play against

each other twice a season, for a total of 380 matches. The English Premier League is

broadcasted worldwide in 212 countries and reaching 4.7 billion people (Kundu et al.,

2019). The revenues generated are therefore enormous and estimated at 2.2 billion

euro in television rights and 5.8 billion euro from other sources such as merchandise

and ticket sale. These numbers illustrate the magnitude of how successful the English

Premier League is.

The highly competitive nature of the English Premier League gives the outcome dis-

tribution of matches much randomness. Therefore it is rather challenging to come up

with accurate prediction models. One way to measure the randomness of a dataset is

by looking at its entropy. An entropy score of 1 means complete randomness. Kundu

et al. (2019) reports that for the historical English Premier League data between the

seasons of 2005 and 2016, the entropy of the dataset was 0.96, which again supports

the assumption that the English Premier League is highly competitive.

1.4 Scoring rules

Scoring rules are functions used to evaluate the performance of predictive models.

There is a wide range of scoring rules available, each developed for different purposes

and situations. For football match outcomes, which is considered to be an ordinal

outcome parameter with three classes, namely home win, draw and away win, there

are also numerous choices available. Debate exists over which scoring rule is the

most appropriate (Wheatcroft, 2019).

Wheatcroft (2019) considered three properties in scoring rules to be relevant for the

evaluations of models that aim to predict football match outcomes. Firstly, a scoring

rule must be proper, meaning that it favours predictions that consist of distributions

drawn from the actual outcome distribution. Another central property in scoring rules

that aim to evaluate football match prediction models, is locality. A scoring rule can ei-

ther be local or non-local. It is considered local if it only takes the probability from the

predicted class into account. Therefore, a non-local scoring rule takes the probability

from multiple classes into account. If a score is non-local, a final property to consider

is sensitivity to distance. This sensitivity to distance follows the rationale that the

predictive outcome classes are ordinal. A scoring rule should, therefore, penalise a

model more in case of an observed home win and predicted away win, compared to

7

1.4. SCORING

a predicted draw (Ley et al., 2019). A scoring rule that is insensitive to distance does

not follow the rationale that the predictive outcome classes are ordinal.

Most articles focus on the ranked probability score (RPS), the Brier score (BS) and

ignorance score (IGN). Some papers use accuracy to evaluate the performance of

their models. However, it is often challenging to predict draws, hence scoring rules

that focus on the probability placed on each outcome class, are preferred.

1.4.1 Ranked probability score

Ranked probability score, proposed by Epstein (1969), is considered to be the most

appropriate scoring rule by Constantinou and Fenton (2012) and has since gained

more recognition. It is currently the most popular and widely used scoring rule for

evaluation of football match outcome models. The ranked probability score is a non-

local scoring rule that is sensitive to distance. The following function gives the ranked

probability score:

RPS =
1

2N

N
∑

n=1

((PHn − yHn)2 + (PAn − yAn)2) (1.2)

Here the parameters PHm and PAm are the predicted probabilities of a home win or

away win. yHm and yAm are the observed outcomes, so either 1 or 0. N is the total

number of predicted matches.

The ranked probability score is a topic of present debate in the literature. Ever since

Constantinou and Fenton (2012) proposed it to be the most appropriate scoring rule,

it gained notoriety. However, Wheatcroft (2019) recently published an article where

he argued against the importance of the non-locality and sensitivity to distance prop-

erties in a scoring rule for the evaluation of models that predict football match out-

comes.

The main argument in favour of the ranked probability score is that probabilities

placed on outcomes close to the observed outcome should receive a higher reward

(Constantinou and Fenton, 2012). If a team is winning by one goal, it takes the op-

posing team one goal to end the match in a draw and two goals to end in a win for

the opposing team. In this regards, the outcome classes are considered ordinal, and

thus sensitivity to distance is deemed to be essential in its scoring rule, which makes

the ranked probability score an obvious choice. Constantinou and Fenton (2012) then

gives hypothetical examples of football matches, from which they conclude that the

ranked probability score is favoured, because it assigns the best score to the favoured

forecast in each case.

8

CHAPTER 1. INTRODUCTION

The main counter-argument of Wheatcroft (2019) is that the examples provided by

Constantinou and Fenton (2012) are flawed since it compares the performance of the

scores under specific outcomes. Instead, the underlying probability distribution of

the match must be taken into consideration because the observed outcome gives no

information about the actual underlying distribution. Wheatcroft (2019) then repro-

duced the examples given by Constantinou and Fenton (2012) and shows that the

Brier score and in particular the ignorance score are more appropriate scoring rules

for football match prediction models.

For a deeper understanding of these examples, we refer the readers to both articles.

In this master dissertation, however, we will use a combination of different scoring

rules to circumvent this debate.

1.4.2 Brier score

The Brier score (Brier, 1950), or the squared loss function, is quite similar to the

ranked probability score but it is insensitive to distance. This insensitivity to distance

means that it does not penalize a model more according to the ordinal structure of

the outcome classes. The following function gives the Brier score:

BS =
1

N

N
∑

n=1

R
∑

r=1

((Pnr − ynr)2) (1.3)

Here N is the number of predicted matches. The parameter R stands for all of the

possible outcome classes. Pnr is the probability placed on instance n for outcome

class r. Ynr is the observed outcome, for instance n and outcome class r, so either 0

or 1.

1.4.3 Ignorance score

The ignorance score (Gneiting and Raftery, 2007), or the logarithmic loss function, is

a scoring rule that is both local and insensitive to distance. The following function

gives the ignorance score:

GN =
1

N

N
∑

n=1

�

− log2(p(yn))
�

(1.4)

Here p(yn) is the probability placed on the correct outcome class y of match n.

Wheatcroft (2019) found practical evidence that the ignorance score is the most

proper scoring rule (Bröcker and Smith, 2007).

9

1.5. PROBLEM STATEMENT

1.5 Problem statement

The main problem is the multitude of models that aim to predict football match out-

comes on incomparable scales. The first layer of the problem is that scholars use

different scoring rules to evaluate the performance of their statistical models. There-

fore the comparison between them is challenging to interpret. A second layer is that

scholars use data of different leagues. Comparison of models trained on different

data is often difficult to understand since different leagues have different competitive

levels. A third layer and final layer is that scholars use different training and test

protocols for their statistical models.

1.6 Objectives

In this master dissertation, we aim to evaluate the current literature of football out-

come prediction models and circumvent the problems mentioned above in section

1.5. The remainder of the master dissertation is built up as follows: section 2 explains

the methods used, section 3 shows the results and finally in section 4 the results are

discussed.

10

CHAPTER 2

METHODS

This chapter explains the methods used to create a detailed overview of the models

on comparable scales, in detail. First, we will go over the general protocol and data.

The following sections explain each evaluated model separately. For each model,

first, the method is conceptualised, and if necessary, the data specific to the model

are explained.

2.1 Protocol

A uniform protocol brings the evaluated models on comparable scales. The evaluation

of each model will use all the scoring rules, mentioned in section 1.4 (ranked proba-

bility score, brier score and ignorance score), in conjunction. The models are ranked

for each scoring rule, and the best performing model is defined by having the high-

est average rank. After that, the models are estimated on data originating from the

English Premier League, which circumvents the problem of using different leagues.

Most models use vastly different predicting procedures. We aim to bring them all

together on a comparable scale. All English Premier League matches in the seasons

of 2008 to 2015 are predicted. During the prediction of a season, the previous two

seasons of matches are used as data, combined with the first five weeks of the current

season, to estimate the model coefficients. The reason for the burn-in period of the

first five weeks is to get reliable information on the possible new teams entering the

league.

The weeks of a season are predicted in a stepwise manner. After the prediction of

each week, the information is added to the data. A football season consists out of

38 weeks, so in total, for each season, 810 matches are used as initial data, and 330

matches are predicted. In total, for the eight seasons, 2640 matches are predicted

Many statistical models from the current literature have some hyperparameters or

variables that require estimation. These hyperparameters are not estimated under

the new protocol, but merely the same values from the articles are used. If these val-

2.2. DATA

ues are absent, the parameters will take arbitrary reasonable values as recommended

by the literature. We will explicitly mention our reasoning where this occurs.

2.2 Data

The English Premier League data used is from the engsoccerdata R package (Curley,

2016). This package is mainly a repository that contains different European foot-

ball datasets, such as the three English ones (Premier League, FA Cup, Playoff) and

also other European leagues (Spain - La Liga, Germany - Bundesliga, Italy - Seria A,

Netherlands - Eredivisie).

Date Season home visitor hgoal vgoal result round
2011-08-13 2011 Fulham Aston Villa 0 0 D 1
2011-08-13 2011 Liverpool Sunderland 1 1 D 1
2011-08-13 2011 Newcastle Arsenal 0 0 D 1
2011-08-13 2011 Wigan Norwich City 1 1 D 1
...
...

Table 2.1: Example of the data used for the English Premier League (Curley, 2016)

2.3 Models

This section explains the statistical models used in detail. The additional data required

by some models is also specified here. The models are ranked to go from more simple

approaches to more complex ones.

2.3.1 Naive models

The first two models utilise the available information naively. We will refer to them as

the nƒorm and ƒ reqency models. These models will serve as benchmark instru-

ments since any model that does not outperform them, is rendered ineffective.

Uniform

The uniform model ignores all available data on past football matches and assumes

that the probabilities for a home win, away win or draw are uniformly distributed.

Effectively this means that for every match, every outcome class gets a probability of
1
3 assigned to it.

12

CHAPTER 2. METHODS

Frequency

Unlike the uniform model, the frequency model does incorporate some information

about past matches played. The frequency model estimates that the probabilities

for a home win, away win or draw are distributed as the observed frequencies of

the home wins, away wins and draws in the past k matches. So effectively the

win probability is equal to p(homen) = 1
N

∑N
k=1 (homenk), analogous we find

p(yn) = 1
N

∑N
=k (ynk) and p(dr) = 1

N

∑N
=k (drk).

2.3.2 Logit regression models

This section explains two articles that both utilise a logit regression approach to pre-

dict the outcome classes.

The first article focuses on the ELO rating system to represent the strengths of the

opposing teams. The second article uses the plus-minus rating system to calculate

the strengths of the individual players relative to the players within the same team

and players between opposing teams.

ELO based models

The ELO based models come from the article by Hvattum and Arntzen (2010). Here

the ELO rating system, adapted for football matches, is used to estimate the current

strengths of the competing teams. An ordered logit regression model then incorpo-

rates the ELO ratings as the single covariate.

Hvattum and Arntzen (2010) compared the predictive performance of this model to

six other methods, namely the two naive methods equal to the uniform and frequency

model mentioned above, two probit regression models derived from Goddard (2005)

and two models based on the odds offered by bookmakers. The article reports that

the logit regression based on the ELO ratings outperforms the naive and probit re-

gression models from Goddard (2005), but does not outperform the models based on

the bookmaker odds.

The ELO rating system, modified for football matches, estimates the current strengths

of a team based on historical data. A scoring system is first defined to derive this

rating. In this scoring system, a win grants a score of 1, a draw a score of 0.5 and a

loss a score of 0. If 0 and j0 are the current ELO ratings of teams i, the home team,

and team j, the away team, respectively, then the ELO rating framework assumes

13

2.3. MODELS

that, on average, each team should score γ and γj against each other in a given

match. The following formulas give the functions for γ and γj:

γ =
1

1 + c−(

0
−j0)/d

γj =
1

1 + c−(
j
0−0)/d

= 1 − γ
(2.1)

The formulas above are dependent on two parameters, namely c and d, with c > 1

and d > 0. These parameters are only used to scale the expected scores. Hvattum

and Arntzen (2010) reported that c = 10 and d = 400 is sufficient. Alternative values

can give identical rating systems. In 2018, the FIFA rating system was changed to

the ELO-based system, with d = 600. Alternative methods extend the ELO ratings by

incorporating a home advantage effect h. The formula above is then formulated as

γ = 1

1+c−((

0+h)−

j
0)/d

. For example the website https://eloratings.net/ uses this formula

with h = 100.

The scoring system gives the observed scores α and αj for both teams, with α = 1 if

team i won, 0.5 if the match was a draw and 0 otherwise. αj is calculated as 1 − α.

The ELO ratings are updated after every match from 0 to 1 by the following formulas:

1 = 

0 + k(α

 − γ)

j1 = 
j
0 + k(α

j − γj)
(2.2)

The formulas above are dependent on the parameter k. Unlike the values for the

parameters c and d, a more careful value consideration is needed for k. If k is set too

low, team ratings take too long to stabilise, and if k is set too high, team ratings will

be too volatile. Hvattum and Arntzen (2010) reported that k = 20 is reasonable and

that after 30 matches the ELO ratings are usually stabilised.

Note that the ELO rating system requires some initial data in order to indicate the cur-

rent strengths of the opposing teams reliably. For this reason, the protocol mentioned

in 2.1 is extended with an initial period of one year, e.g. for the prediction of the

season for the year 2008, the season of 2005 is used to get reliable initial estimates

of the ELO ratings before starting the training protocol.

Two prediction models are created from this ELO rating system, namely the basic

ELO and goal-based ELO. The basic ELO uses the methodology described above, with

c = 10, d = 400 and k = 20. The goal-based ELO extends the basic ELO, by improving

the parameter k to depend on the absolute goal difference between the teams. The

14

CHAPTER 2. METHODS

incorporation of this goal difference ensures that a higher difference translates to a

higher gain in ELO. The parameter k is now extended to k = k0(1 + δ)λ, with δ equal

to the absolute goal difference. The goal-based ELO thus requires the estimation of

four hyperparameters. Hvattum and Arntzen (2010) reported that c = 10, d = 400,

k0 = 10 and λ = 1 are reasonable.

The ordered logit regression model is then used, with the difference in the ELO ratings

of the opposing teams as a single covariate, to make predictions for the match results.

The difference in ELO ratings is defined as  = 0 − 
j
0, with 0 equal to the current

ELO rating of team i, the home team, and j0 for team j, the away team. After each

prediction, the ELO ratings are updated. Figure 2.1 shows how these ELO ratings have

evolved from 2000 to 2015. The ordered logit regression model is defined by:

p(y = |) = F(−Θ − β) − F(−Θ−1 − β)

F(z) =
1

1 + e−z

(2.3)

In the formula above j ∈ {1,2,3} represents the outcome classes, with j = 1, for an

away win, j = 2 for a draw and j = 3 for a home win. The parameters Θ are used to

differentiate between the ordinal values of the dependent variable. Only Θ1 and Θ2

need to be estimated, since Θ0 = ∞ and Θ3 = −∞. The function F(z) represents the

logit link, with F(−∞) = 0 and F(∞) = 1. So in total the the logit regression needs to

estimate three parameters, namely Θ1, Θ2 and βELOdƒ ƒ .

Figure 2.1: Evolution of ELO ratings from 2000-2015

Plus-minus based models

The plus-minus based models are derived from the article by Sæbø and Hvattum

(2015). Here the plus-minus rating system, adapted for football matches, is used to

estimate the strengths of the players relative to its own teammates and the opposing

15

2.3. MODELS

team’s players. The plus-minus ratings of a team are then calculated as the average

plus-minus ratings of the players within a team. Again, an ordered logit regression

model, with the difference in the plus-minus ratings of the opposing teams, is used to

estimate the outcome class probabilities.

Plus-minus ratings attempt to distribute credit for the goals of a team onto the play-

ers responsible for it (Hvattum, 2019). In its simplest form, the plus-minus rating

system calculates the goals scored minus the goals conceded for every player during

a match. Specifically for football matches, Sæbø and Hvattum (2015), came up with

a regularised adjusted plus-minus rating system.

For the regularised adjusted plus-minus ratings, we first need to define segments,

within a match, of constant players on the field. Every time a team changes a player

on the field, or a player receives a red card, the match is split into two separate

segments.

For each segment i, we define an appearance of a player j, by the parameter αj. The

value of αj is given by the following formula:

αj =















e−kt If player j plays for the home team in segment i

0 If player j does not play in segment i

−e−kt If player j plays for the away team in segment i

(2.4)

In the formulas above, the factor e−kt is dependent on two parameters, namely k

and t, and represents a time depreciation effect. The parameter t is the difference

between the current time, when the plus-minus ratings need to be estimated, and the

time when a match is played, expressed in years. The parameter k ∈ [0,1] represents

the magnitude of the time depreciation effect. Sæbø and Hvattum (2015) report that

k = 0.2 is within reason. This value implies that the weight of a match played five

years ago contributes only for 1
e (≈ 0.37) to the estimation of the plus-minus rating,

compared to matches played in the present time.

Since the plus-minus rating system is based on the goals scored minus the goals

conceded, we define a parameter β. This parameter represents a scaled version

of the goals scored minus the goals conceded, in favor of the home team, during a

segment i. The following function defines β:

β =
90(H − A)e−kt

D
(2.5)

16

CHAPTER 2. METHODS

In the formula above, the parameter D represents the duration of segment i, H − A
represents goals scored minus the goals conceded in favour of the home team during

segment i and e−kt is again the time depreciation effect.

A twelfth dummy player, that is included in every home team’s starting lineup, ac-

counts for the home advantage effect. The appearance of the home advantage is

thus always equal to e−kt. For the calculation of the plus-minus ratings of a home

team, the average of the players and home team advantage must be taken.

Four dismissal dummy variables account for the effect of red cards. When a player j in

the home team gets a red card, then the first dismissal dummy gets a value of e−kt,

and the player’s appearance is changed to 0. A second red card for the home team

would lead to a transfer of appearance from the player getting the red card to the

second dismissal dummy. Red cards for the opposing teams can nullify the dismissal

dummy variables, e.g. if the home team has two red cards and the away team one,

then the first dismissal dummy has a value of 0 and the second a value of e−kt.

Finally the plus-minus ratings x are calculated by:

 = (T + λ)−1Tβ (2.6)

The formula above corresponds to the estimation of the coefficients in a penalised lin-

ear regression by using the least-squares criterion. The penalisation term is crucial,

since many players are joint for most of their playtime. The rating system then strug-

gles to differentiate between them, which causes collinearity issues and inflates the

errors. Also, the ratings for players with little playing time are prone to large errors.

The penalisation term in equation 2.6 is equivalent to the ridge regression approach

and was found by Macdonald (2012) to be the most appropriate penalisation term

when estimating plus-minus ratings. Sæbø and Hvattum (2015) report that λ = 3000

is sufficient.

Note that the plus-minus ratings, just like the ELO ratings, requires some initial data

in order to indicate the current strengths of the opposing teams reliably. Arntzen and

Hvattum (2020) used the previous five seasons to get those initial ratings, so we will

extend the protocol, mentioned in 2.1, with an initial period of five years, e.g., for

the prediction of the season of 2015, the seasons from 2008 till 2012 are used to

get the initial ratings. Then the seasons 2013 and 2014, in combination with the first

five weeks of season 2015, are used to estimate the coefficients of the ordered logit

regression.

17

2.3. MODELS

In this master dissertation, we were not able to incorporate the data for the red cards

due to time constraints. Also important to note is that Sæbø and Hvattum (2015)

did not use the plus-minus ratings initially to predict football match outcomes, but

instead, they used it to evaluate the efficiency of the transfer market. However, in a

follow-up study by Arntzen and Hvattum (2020) the difference in plus-minus ratings

between the opposing teams, in favour of the home team, is taken as a single covari-

ate in an ordered logit regression, see equation 2.4. Arntzen and Hvattum (2020) also

improved the plus-minus rating system to depend on an age effect, the similarity of

the players and the competition type.

2.3.3 Poisson based models

The third set of models comes from the article by Ley et al. (2019). Here eight dif-

ferent statistical models are compared in their performance to predict football match

outcomes. From those models, the independent and bivariate Poisson had the high-

est predictive power. Additionally, these models create a ranking method based on a

maximum likelihood approach. We will refer to this ranking parameter as the ability

of a team. Figure 2.2 shows how these have evolved between 2000 and 2015.

Figure 2.2: Evolution of the abilities from 2000-2015

Independent Poisson

The independent Poisson models the goals of the opposing teams i and j by the ran-

dom variables G,m and Gj,m for match m. These random variables follow a Poisson

distribution. The following formulas give the joint density distribution of observing

x goals for team i and y goals for team j, under the assumption that both random

variables are independent from each other:

18

CHAPTER 2. METHODS

P(G,m = ,Gj,m = y) =
λ,m
!

ep(−λ,m).
λyj,m
y!

ep(−λj,m) (2.7)

The parameters λ,m and λj,m are the expected goals scored by team i and j, respec-

tively. These λ’s are estimated to represent the abilities of the opposing teams. The

following formulas demonstrate this:

λ,m = ep(c + (r + h) − rj)

λj,m = ep(c + rj − (r + h))
(2.8)

Here h stands for the home effect, c is the intercept, r and rj are the relative abilities

of team i, the home team, and team j, the away team, respectively. The ability param-

eters, intercept and home team advantage are estimated by a maximum likelihood

approach which takes the following formula:

L =
M
∏

m=1

∏

,j∈(1,...,T)





λ
g,m
,m

g,m!
ep(−λ,m).

λ
gj,m
j,m

gj,m!
ep(−λj,m)





yjm.tme,m

(2.9)

In the formula above, the parameter m ∈ {0, ...,M} is an index for the match, and

the parameter T encompasses all the different teams. The random variable yjm is

equal to 1, if i and j stand for the home and away team, respectively, in match m,

else yjm is equal to 0. The parameters g,m and gj,m are the actual observed goals

scored by each team. Wtme,m serves as a decay function to reflect a smooth time

depreciation effect. This function is given by Wtme,m(m) =
1
2

m
Hƒperod , which implies

that a match played Half period days ago contributes half as much to the likelihood

function compared to matches played in the present time.

Ley et al. (2019) reports that the optimal Half period was 360 days for the Independent

Poisson model and 390 days for the Bivariate Poisson model for the data coming from

the English Premier League.

Bivariate Poisson

Ley et al. (2019) extended the basic independent Poisson by adding a direct correla-

tion coefficient between the scores, based on the bivariate Poisson model suggested

by Karlis and Ntzoufras (2003). The goals of the opposing teams i and j are now mod-

elled by the random variables G,m = X,m+XC and Gj,m = Xj,m+XC for match m, where

Xj,m, X,m and XC follow a Poisson distributed with the respective intensity parameters

λj,m, λ,m and λC. The expected goals, E(G,m) = λ,m + λC and E(Gj,m) = λj,m + λC

19

2.3. MODELS

, scored by team i and j respectively, now take the correlation term into account.

The parameter λC is the correlation between the scores of both opposing teams. The

λ,m and λj,m parameters are still estimated to represent the abilities of the opposing

teams, with the same equation as 2.8. The following formula gives the joint density

distribution of the bivariate Poisson:

P(G,m = ,Gj,m = y) =
λ,mλ

y
j,m

!y!
ep(−(λ,m + λj,m + λC))

mn(,y)
∑

k=0

�



k

��

y

k

�

k!
�

λC

λ,mλj,m

�k

(2.10)

The next formula gives the appropriate likelihood function:

L =
M
∏

m=1

∏

,j∈(1,...,T)





λ
g,m
,m λ

gj,m
j,m

g,m!gj,m!
ep(−(λ,m + λj,m + λC))

mn(g,m,gj,m)
∑

k=0

�

g,m

k

��

gj,m

k

�

k!
�

λC

λ,mλj,m

�k




yjm.tme,m

(2.11)

.

The parameters of the likelihood function are interpreted in the same way as in equa-

tion 2.9. If i and j stand for the home and away team, yjm is still equal to 1 and else

to 0. The observed goals are denoted as g,m and gj,m. Wtme,m is still the weight

function for the time decay effect.

2.3.4 Weibull count model

The fourth model comes from the article by Boshnakov et al. (2017). Just like the

Poisson based models, the fourth approach is also goal-based, which means that it

models the goal distributions of the opposing teams. However, unlike the Poisson

based models, the fourth approach assumes that the goals now follow a Weibull count

distribution. The following formula gives the Weibull count density distribution:

p(X(t) = ) =
∞
∑

j=

(−1)+j(λtc)jαj
(cj + 1)

(z) =
∫ ∞

0
tz−1e−tdt

(2.12)

In the function above α0j = (cj+1)/(j+1), for j = 0,1,2, ..., and α+1j =
∑j−1
m= α


m(cj−

cm + 1)/(j − m + 1), for  = 0,1,2, ... and j =  + 1,  + 2,  + 3, The parameter

λ can be seen as the scoring rate per match, which is comparable to the λ used in

the Poisson distribution. The c parameter is the shape of the distribution and allows

20

CHAPTER 2. METHODS

for extra flexibility. The dispersion of the Weibull count is denoted by the hazard

h(t) = λctc−1. Note that if c = 1, the Weibull count distribution is equal to a Pois-

son distribution, since the dispersion is then equal to λ. If c > 1 the distribution is

over-dispersed and if c < 1 the distribution is under-dispersed. For the estimation of

this density function, we used the R package Countr (Baker et al., 2016). Figure 2.3

illustrates the differences between the Poisson and Weibull count distribution, fitted

to the goals of the home and away teams in the English Premier League, and clearly

shows that the Weibull count distribution has a better fit, in particular for lower values

of the observed goal values.

Figure 2.3: Difference between Weibull Count and Poisson distribution

Boshnakov et al. (2017) used the Weibull count distribution with a copula dependence

between the goal distributions of the home and away teams to create a bivariate

prediction model for the outcomes of football matches. A copula C is a multivariate

distribution, for which the marginal distributions are uniform between [0,1]. Here a

copula C is used to glue the marginal cumulative distributions, of the home and away

goals, together. The following formula illustrates this:

C(F1(y1), F2(y2)) = F(y1, y2) (2.13)

21

2.3. MODELS

Equation 2.14 shows how a copula C can be used to glue the marginal cumulative

distributions, F1(y1) and F2(y2), together from the joint density distribution F(y1, y2).

Boshnakov et al. (2017) reports that a Frank’s copula provided the best fit to the data,

and will thus be the copula of choice. The formula below gives the equation for Frank’s

copula:

C(,) = −
1

k
log

�

1 +
(e−k − 1)(e−k − 1)

e−k − 1

�

(2.14)

In this formula, the parameter k is the dependence between  and , which in our case

are the marginal cumulative distributions. The coefficients of the bivariate Weibull

count model are then estimated by using a maximum likelihood approach. The maxi-

mum likelihood takes the following formula:

L(k, α, β, c) =
M
∏

k∈(k:tk<t)
(C(F1(y1), F2(y2)) − C(F1(y1 − 1), F2(y2))

− C(F1(y1), F2(y2 − 1)) + C(F1(y1 − 1), F2(y2 − 1))∗ e−ε(t−tk)

(2.15)

Here F1 and F2 are again the cumulative Weibull count distributions for the home

and away teams respectively. The cumulative Weibull count distributions require two

variables, the rate parameter λ and shape parameter c. For every home team the

parameter λ is defined as: log(λ) = α + β + γ, with α equal to the attack strength

of team i, β equal to the defence strength and γ the effect of playing as the home

team. For every away team the parameter λ is defined as: log(λj) = αj + βj. The

shape parameters ch and c, for the home and away team respectively, are expected

to be constant. The parameters y1 and y2 are the observed goals.

The maximum likelihood procedure thus has to estimate 2T + 4 parameters, namely

α’s and β’s for all the teams T, ch and c which are the shape parameters of the

home and away team, h the home team effect and k the dependence term from

Frank’s copula.

Finally, the last unknown parameter ε models the time depreciation effect. In formula

2.16, the term t − tk stands for the difference between the time tk, when a historical

match m was played, and the current time t, expressed as number of days. The value

for ε is obtained by maximizing the next function:

T(ε) =
N
∑

k=1

(δHk logp
H
k + δ

A
k logp

A
k + δ

D
k logp

D
k + γ

O2.5
k logpO2.5k + γU2.5k logpU2.5k) (2.16)

22

CHAPTER 2. METHODS

In this formula, δHk = 1 if the home team won the match k, δAk and δDk are interpreted

analogously. pHk , pAk and pDk are the maximum likelihood estimates for the probability

of a home win, home loss and draw, respectively, in match k. The parameter γO2.5 =

1, if there are more than 2.5 goals in match k, and γU2.5 = 1 if there are fewer than

2.5 goals. pO2.5k and pU2.5k are the maximum likelihood estimates for the probability of

observing more or fewer than 2.5 goals in match k. Boshnakov et al. (2017) reports

that a value of ε = 0.002 is reasonable. This value implies that the weight of a

match played 500 days ago contributes only for 1
e (≈ 0.37) to the maximum likelihood

estimation, compared to matches played in the present time.

2.3.5 Machine learning models

The next models come from the article by Baboota and Kaur (2019). In this article,

Baboota and Kaur (2019) compared five different machine learning approaches in

their ability to predict football match outcomes. The considered models are the naive

Bayes, linear support vector machine, RBF support vector machine, random forest and

gradient boosting. From those five models, the random forest and gradient boosting

outperform the other models and will thus be included in this master dissertation.

Firstly, we will go over the specific data used for these models.

Data

The models used by Baboota and Kaur (2019) use a set of highly informative engi-

neered features. The first set feature involves the different FIFA-ratings of the oppos-

ing teams, namely the attack, midfield, defence and overall rating. The EA Sports

company constructed these ratings to be used in the FIFA game series. The ratings

can be scraped from the FIFA index database (https://www.fifaindex.com/). The sta-

tistical model then uses the difference between the respective home and away team

ratings, given by the following formula, R = RH − R
A
 , for R ∈ (attack, midfield, de-

fence, overall), and RH and RA, standing for the home and away team respectively.

This trend, of using the difference between the home and away team, can be assumed

for all the following continuous features.

The next feature is the goal difference. This feature is a sum of the goal differences

from the preceding matches. The goal differences for the kth match is given by GD

=
∑k−1
j=1 GSj −

∑k−1
j=1 GCj, where GS and GC stand respectively for the goals scored and

conceded.

The third set of features incorporate information of a team’s recent performance.

Specifically, the feature contains the average the number of corners, shots on target

23

2.3. MODELS

and goals of the past k matches. the formula for the jth match is given by, μj =

(
∑j−1
p=j−k μ


p)/k, with μ ∈ (Corners, Shotsontrget, Gos). The hyperparameter k

requires tuning. Baboota and Kaur (2019) report that k = 6 is optimal for the random

forest and gradient boosted model. The data for this feature can be obtained from

the Football UK website (https://www.bbc.com/sport/football/).

The fourth set of features are also engineered to represent the recent performance

of a team. Namely two indicators, the streak and weighted streak, were used for this

purpose. The streak is meant to capture the recent increase/decrease in performance

of a team. The streak is calculated by giving a score to each match result, and then

the mean score of the k preceding matches is taken. Note that k is the same hyperpa-

rameter as mentioned above. The scores follow the 3-1-0 rule. A win grants a score

of 3, a draw a score of 1 and a loss a score of 0. The weighted streak is calculated

by updating the streak with a time depreciation effect. The oldest observation (j-k)

gets a value 1, and the most recent observation (j-1) gets a value k. The following

formulas give the streak (δ) and weighted streak (ω) for the jth match:

δj =

j−1
∑

p=j−k
resp

!

/3k

ωj =
j−1
∑

p=j−k
2
p − (j − k − 1)resp

3k(k + 1)

(2.17)

Here resp ∈ (0,1,3) stands for the score given to the outcome of the match. The

term 3k ensures that the streak is normalised between 0 and 1. In the weighted

streak formula, the term p− (j− k− 1) ensures that the oldest observation (j-k) gets a

value 1, and the most recent observation (j-1) gets a value k, and the term 3k(k+1)/2

now ensures the normalisation.

The last feature, named form, aims to display the performance of a team during an

individual match. Just like the streak feature, a team’s form gives information about

the recent performance of a team. However, contrary to the streak feature, the form

feature displays a team’s performance relative to the opposing team. After every

match, the form values of a team are updated. The form feature rewards a team with

low form, defeating a team with high form, more, and vice-versa. If the match ends in

a draw, the form of the weaker team increases, while the form of the stronger team

decreases. The initial value of the form of each team is 1, and updated after every

match by the following formula:

In the case of a win or loss:

24

CHAPTER 2. METHODS

εαj = ε
α
j−1 + γε

β
j−1

εβj = ε
β
j−1 − γε

α
j−1

(2.18)

In the case of draw:

εαj = ε
α
j−1 − γ

�

εαj−1 − ε
β
j−1

�

εβj = ε
β
j−1 − γ

�

εβj−1 − ε
α
j−1

� (2.19)

With εαj and εβj equal to the form of team α and team β respectively, in the jth match.

The parameter γ is referred to as the stealing fraction, e.g. if team α wins over team

β, it steals a fraction γ of team β’s form. If the match ends in a draw, the weaker

team gets a positive update and the stronger team a negative update, proportional

to the difference in their respective forms. Baboota and Kaur (2019) report that the

value of the stealing fraction γ is equal to 0.33.

Feature Equation

Form εαj − ε
β
j

Streak δαj − δ
β
j

Weighted streak ωα
j − ω

β
j

Corners μαcorners,j − μ
β
corners,j

Goals μαgos,j − μ
β
gos,j

Shots on target μαshots,j − μ
β
shots,j

Goal difference GDα
j − GD

β
j

FIFAttck FIFAαttck,j − FFA
β
ttck,j

FIFAmdƒ ed FIFAαmdƒ ed,j − FFA
β
mdƒ ed,j

FIFAdeƒence FIFAαdeƒence,j − FFA
β
deƒence,j

FIFAoer FIFAαoer,j − FFA
β
oer,j

Table 2.2: Features used in (Baboota and Kaur, 2019)

Note that many of the variables are only calculated after k = 6 weeks. Thus a burn-in

period of 6 weeks is needed to get reliable estimates of the features. Baboota and

Kaur (2019) reports that the highest performance is found by the random forest and

gradient boosting algorithm. The following subsections give some detail about these

models.

Random Forest

Random forest models, first proposed by Breiman (2001), is a method that ensem-

bles decision trees. These decision trees are used for regression or classification

25

2.3. MODELS

problems. The decision trees work by partitioning the predictor space (X1, ..., Xp)

repeatedly into multiple, non-overlapping, distinct regions (R1, ..., Rj). Usually, this

is done with binary splits, intending to find homogeneous response values within the

same region and heterogeneous response values between them (Groll et al., 2019).

Figure 2.4 illustrates how this progress works with a dendrogram. The decisions trees

predict values by averaging over the response values, for regression trees, or using

the majority vote, for classification approaches. On figure 2.4, we observe four differ-

ent splits, that define five distinct regions. However, many more splits could be used,

which makes decision trees prone to overfitting.

Figure 2.4: Example of decision trees. source: Ley, C. (2020). Big data science, Chapter 4 - Tree-based
method [PowerPoint slides], course material University Ghent.

Random forests circumvent this issue of overfitting by using a bagging approach. This

bagging approach first creates multiple bootstrapped datasets, and for each such

dataset, a decision tree is created. The random forest model aggregates the predic-

tions over the multiple individual decision trees. Combining all of these individual

decision trees has the advantage of making the predictions unbiased and reducing

the variance among them. Another improvement of random forests over decision

trees is that random forest only uses a random subsample of the original predictor

space. This reduces the correlation between the multiple decision trees over different

bootstrapped datasets. The selection of the random subset of predictors is usually

done in two steps. First, the decision trees only use a random subset of original pre-

dictor space, and secondly, at every node, a random subset of the predictor space of

the decision tree is used to find the best split.

26

CHAPTER 2. METHODS

We use the programming language Python version 3.7.6 with the machine learning

software sklearn to create the random forest classifier. The table below shows the

specific hyperparameters used.

The first hyperparameter, name criterion, measures the quality of a split. It measures

the amount of entropy or impurity that each feature removes when it is used in a node.

The second hyperparameter, named max features, gives the maximum number of

features that can be randomly selected at every node to find the best split. A value of

log2 indicates that if the predictor space of the decision tree has eight features, three

randomly selected features can be used in every node. The third hyperparameter,

min samples leaf, indicate the minimum number of samples needed to form a distinct

region (or leaf). A value of two would mean that a split will only occur if the distinct

regions, that are formed after the splitting, each have at least two samples in them.

The fourth hyperparameter, min sample split, is similar. A value of 100 indicates that

100 samples are needed to split an internal node. Both the min samples leaf and min

samples split are used to smooth out the data and attempt to reduce the probability

of learning noise. The last hyperparameter, N estimators, indicates the number of

bootstrapped datasets, with their respective decision trees, that are aggregated into

a final random forest. Usually, the value for this hyperparameter is set high enough,

so that the predictions obtain the feature of being unbiased, and low enough to reduce

computational demands.

Hyperparameter Description Value used
Criterion The function used to measure the quality of a split gini
Max features The maximum number of features for the best split log2
Min samples leaf The minimum number of samples at region 2
Min samples split The minimum number of samples needed to split an internal node 100
N estimators The number of independent trees in the forest 150

Table 2.3: Hyperparameters used in the random forest of (Baboota and Kaur, 2019)

Gradient boosting

Just like the random forest, gradient boosting is a technique that ensembles decision

trees. However, unlike the random forest, it does not use a bagging approach, but

alternatively, it uses the boosting principle. The difference between a bagging and a

boosting approach is that in a boosting approach, the decision trees are not trained

independently from each other. Instead, the decision trees are trained in sequence

on the entire data set. The model’s accuracy increases with each iteration.

We again use the programming language Python version 3.7.6 with the open-source

software XgBoost to create the gradient boosted classifier (Chen and Guestrin, 2016).

The table below shows the specific hyperparameters used.

27

2.3. MODELS

The first hyperparameter, gamma, is the minimum loss reduction required to make

a further partition on an internal node of the tree. A value of 0.5 means that the

loss needs to be reduced by 0.5 before splitting a node. A large value of gamma

means that the algorithm will be more conservative. The second hyperparameter

is the learning rate. In gradient boosting algorithms, trees are added to the model

sequentially. The newly added trees aim to correct the residual errors in the older

trees, which can cause the model to overfit. The learning rate aims to shrink the

weight of these new trees. Lower values for the learning rate means that the boosting

algorithm stays more conservative. The third hyperparameter, max depth, indicates

the maximum depth of a tree. A value of three means that only three consecutive

splits can be used for each tree. Larger values for this hyperparameter would make

the model more complex and likely to overfit. The final hyperparameter, lambda, is a

ridge regularization term on weights. It is used to reduce the probability of overfitting,

and a large value will make the model more conservative.

Hyperparameter Description Value used
Gamma The minimum loss reduction required to make a split 0.5
Learning rate Boosting learning rate 0.025
Max depth Maximum depth per tree 3
Lambda Controls the regularization strength 0.6

Table 2.4: Hyperparameters used in the random forest of (Baboota and Kaur, 2019)

2.3.6 Hybrid random forest model

The final model, proposed by Groll et al. (2019), uses a hybrid modelling approach.

This hybrid approach combines both the bivariate Poisson, from section 2.3.3, and a

random forest regression model.

Many covariates are gathered and concatenated into a single, highly informative

dataset. One of those covariates are the ability parameters estimated by the max-

imum likelihood approach of the bivariate Poisson, see section 2.3.3 and figure 2.2.

The random forest approach then uses all these covariates to model the goals scored

by both the home and away team. The Skellam distribution, see section 1.2.1, uses

these estimated goals as intensity parameters, λ1 and λ2, to derive the probabilities

for each outcome class.

Figure 3.2, which comes from the original article by Groll et al. (2019), shows that the

ability parameter is highly informative and essential for the performance of the model.

The implementation of this model was done in the programming language R version

3.6.1 by using the ctree function from the party package. The package mlr is used

to specify the hyperparameters of the hybrid random forest model. As mentioned in

section 2.3.5, the random forest model uses a bagging approach, which bootstraps

28

CHAPTER 2. METHODS

the data and creates independent decision trees on each of them. If the number of

trees used is large enough, the predictions are considered to be unbiased, and the

variance is greatly reduced. Predictions are made by averaging over the predictions

from the individual trees. The hyperparameter B, for the number of trees, does not

require tuning as long as it is sufficiently large, so it gets the feature of unbiasedness

(Probst and Boulesteix, 2017). Groll et al. (2019) reports that the number of trees,

B = 500, is sufficient.

Data

We will now go over all the covariates used in the dataset from the original article by

Groll et al. (2019). The dataset used in the original article was created for the national

teams. Unfortunately, due to time constraints, we were not able to reproduce the

complete dataset for the English Premier League.

Variable Description
Sportive variables
ODDSET probability The bookmaker odds converted to winning probabilities
FIFA rank The FIFA rank of the national teams based on the last four years
ELO rating The ELO rating of the national teams
ABILITIES The ability of a team estimated by the bivariate Poisson model, see 2.3.3
Economic variable
GDP per capita The increase in GDP between 2002-2004 for every nation
Population The nation’s population size
Team structure variables
Host Dummy indicating if a national team is the hosting country
Continent Dummy indicating if the national team is on the same continent as the host
Confederation A categorical variable indicating the confederation of a team
Home advantage variables
Maximum teammates The maximum number of team mates for each squad
Second maximum teammates The second maximum number of team mates for each squad
Age The average age of each squad
Champion league players Number of Champion league players in a squad
Legionnaires Number of players in a squad, playing in clubs abroad
Coach variables
Age The age of a team’s coach
Tenure The tenure of a team’s coach
Nationality Dummy indicating if a coach has the same nationality as the team

Table 2.5: Variables used in the hybrid random forest of Groll et al. (2019)

Since we were not able to replicate all the essential features of the dataset during the

timeframe of this master dissertation, we decided to focus on a subset of the most

informative ones based on figure 3.2, which comes from the original article by Groll

et al. (2019).

First, all of the sportive variables were included since those were the most informative

for the hybrid random forest model. The ability variable is by far the most important

feature. This variable was replicated by using the method described in the bivariate

Poisson, section 2.3.3. The second most informative feature are the ELO ratings of

29

2.3. MODELS

the teams. These were obtained through the goal-based ELO model from Hvattum

and Arntzen (2010), section 2.3.2. For the FIFA rank data, we used the overall FIFA

rank from the data set of Baboota and Kaur (2019), section 2.3.5. The odds data were

obtained from the website http://www.football-data.co.uk/ and specifically, we used

the odds from the bet365 company.

From the home advantage variables, only the age variable was used, since all others

were deemed irrelevant for the English Premier League. The age variable, which is the

average age of the players in a team, was scraped from the website https://www.worldfootball.net/

. On that website, the dates of birth of all the English Premier League players, given

a season, were listed. Through their dates of birth and the current season, their age

could be reverse-engineered.

Most of the economic and team structure variables were not relevant for the English

Premier League, e.g. the GDP per capita would be the same for every team and

were thus not included. The data concerning the coaches variables were not included

due to time constraints. These variables were only mildly informative for the hybrid

random forest model, so no significant performance loss is expected.

Figure 2.5: Barplot of the variable importance in the original hybrid random forest of Groll et al. (2019)

We also incorporate the random forest model, discussed in Groll et al. (2018), which is

identical to the hybrid random forest described above, but without incorporating the

information of the abilities of the teams. In order to differentiate between the random

forest of Baboota and Kaur (2019) and Groll et al. (2018), we will refer to both models

as Random forest1 and Random forest2 respectively. The reason for incorporating the

basic random forest is to illustrate how much predictive power is improved by using

the hybrid approach.

30

CHAPTER 3

RESULTS

This chapter will discuss the results of this master dissertation. The scoring rules,

mentioned in section 1.4, evaluate and rank the models per scoring rule. The average

rank then defines the overall best performing model. After that, we will go over the

specific results for each model separately and reference the values for the scoring

rules reported in the original articles.

3.1 General results

Table 3.1 shows the average scores (standard deviation) for all the models per scoring

rule. Lower scores translate to a better predictive performance of the model. This

table shows that models with more sophisticated techniques performed better on

average compared to more simplistic models. The models from Baboota and Kaur

(2019) significantly outperform the other models, with the gradient boosting model

the best among them. Nonetheless, the most complex model, the hybrid random

forest, only mildly outperforms the goal-based ELO model, which is considered to use

a more simplistic approach.

Another example of this is the Weibull count model, which, despite having a better

fit to the observed goals, performs worse than the Poisson-based alternatives. The

Poisson-based and ELO models are very similar in their performance. More parsimo-

nious models and models with fewer assumptions are seemingly better at predicting

football match outcomes.

3.2. ELO BASED MODELS

Model Ignorance score Brier score RPS Score Mean rank
Gradient boost 0.933 (0.361) 0.353 (0.175) 0.132 (0.073) 1.000
Random forest1 0.964 (0.350) 0.363 (0.172) 0.141 (0.072) 2.000
Hybrid random forest 1.387 (0.729) 0.571 (0.353) 0.190 (0.135) 3.000
Random forest2 1.408 (0.723) 0.581 (0.350) 0.195 (0.136) 4.000
Goal-based ELO 1.409 (0.752) 0.581 (0.359) 0.197 (0.147) 5.000
Bivariate Poisson 1.417 (0.801) 0.583 (0.355) 0.198 (0.145) 6.333
Basic ELO 1.415 (0.749) 0.584 (0.357) 0.198 (0.147) 6.667
Independent Poisson 1.421 (0.762) 0.585 (0.355) 0.198 (0.141) 8.000
Plus-minus 1.460 (0.759) 0.605 (0.356) 0.207 (0.152) 9.333
Weibull count 1.464 (0.526) 0.610 (0.261) 0.203 (0.101) 9.667
Frequency 1.533 (0.395) 0.641 (0.193) 0.225 (0.089) 11.000
Uniform 1.585 (0.000) 0.667 (0.000) 0.235 (0.073) 12.000

Table 3.1: The mean (sd) score for each model per scoring rule and the average rank.
Random forest1 from Baboota and Kaur (2019) and Random forest2 from Groll et al. (2018)

3.2 ELO based models

For the basic ELO, Hvattum and Arntzen (2010) reported a Brier score with a mean

(standard deviation) of 0.627(0.248) and for the goal-based ELO a Brier score of

0.626(0.249). For these models, we respectively report brier scores of 0.584(0.357)

and 0.581(0.359). Hvattum and Arntzen (2010) reports an ignorance score of 1.502(0.503)

and 1.499(0.506) for the basic ELO and goal-based ELO, respectively. We report igno-

rance scores of 1.415(0.749) and 1.409(0.752). Our findings are likely to be better

due to the burn-in of the first five weeks, which excluded these observations from the

testing procedure. The reported scores are still within each other’s standard devia-

tions. Note that the deviations we report are from the individual observations to the

mean, not the standard deviation of the mean, which we would specifically denote as

the standard error.

The standard deviations reported in the original paper by Hvattum and Arntzen (2010)

are lower compared to our findings. This might be due to the differences in the

training protocol. Hvattum and Arntzen (2010) used two seasons to get initial ELO

ratings, then five seasons were used to estimate the coefficients of the ordered logit

regression, and finally, eight seasons were used to test on. The coefficients of the

ordered logit regression from Hvattum and Arntzen (2010) were also updated after

the prediction of a match.

Table 3.2 shows the coefficients of the ordered logit regression, estimated in this

master dissertation, by the end of the season 2015.

32

CHAPTER 3. RESULTS

Parameter Value Standard error t-value
βELO 0.006 0.001 12.310
ΘA|D -0.912 0.068 -13.328
ΘD|H 0.238 0.063 3.784

Table 3.2: Coefficients for the ELO ordered logit regression by the end of season 2015

3.3 Plus minus ratings

For the ordered logit regression based on the plus-minus ratings, Arntzen and Hvat-

tum (2020) report a brier score of 0.614 and an ignorance score of 1.476. Our results

report a brier score of 0.605(0.356) and an ignorance score of 1.460(0.759), which

are thus within each other’s magnitude. Surprisingly, we only included a more simplis-

tic version of the plus-minus ratings, but the predictive performance does not seem

to suffer. We have to note, however, that the original paper does not use a burn-in

period.

Table 3.3 shows the coefficients of the ordered logit regression, estimated in this

master dissertation, by the end of the season 2015.

Parameter Value Std. Error t-value
βPM 45.68 4.04 11.31
ΘA|D 0.43 0.14 3.20
ΘD|H 1.63 0.15 10.89

Table 3.3: Coefficients for the plus-minus ordered logit regression by the end of season 2015

3.4 Poisson based models

For the independent and bivariate Poisson, Ley et al. (2019) reports a ranked probabil-

ity score of 0.1954 and 0.1953, respectively. Our findings are very similar, 0.1983(0.1407)

and 0.1975(0.1452) for the independent and bivariate Poisson, respectively. The orig-

inal article does not report any standard deviations, but the scores are well within the

range of our observed findings. The protocol used by Ley et al. (2019) is identical to

the protocol used in this master dissertation. First, the past two years and the first

five weeks of the current season were used as initial data, and the data was updated

after the prediction of a week. The only difference is that Ley et al. (2019) predicted

from season 2008 till 2017, while we predicted from the season of 2008 till 2015.

33

3.5. WEIBULL COUNT

3.5 Weibull count

The article for the Weibull count by Boshnakov et al. (2017) does not incorporate any

of the scoring rules from section 1.4. Instead, it uses the Akaike information criterion

(AIC) to compare the copula-based Weibull count model to a copula Poisson model,

an independent Weibull count model and independent Poisson model. The lowest AIC

was reported for the copula Weibull count model. Unfortunately, we were not able to

confirm these findings, since the Weibull count did not outperform the independent

Poisson.

3.6 Machine learning models

For the machine learning models, by Baboota and Kaur (2019), the article reports a

ranked probability score of 0.2100 and 0.2137 for the gradient boosting model and

random forest model respectively. However, Baboota and Kaur (2019) also include fig-

ure 3.3 in their article and from that figure, we can indicate that the ranked probability

scores of both the gradient boosting and random forest are around 0.173. This infor-

mation seems inconsistent in the original article. Our finding reports a much lower

ranked probability score of 0.132(0.073) and 0.141(0.072), for the gradient boost-

ing model and random forest model, respectively. In the original article, the matches

are not estimated in a stepwise manner. The matches from 2005 to 2014 were used

as training data, and the matches from 2015 to 2016 were used as test data. The

stepwise addition of information might explain why our findings report lower ranked

probability scores. Figure 3.1 shows the feature importance for both models.

3.7 Hybrid model

Finally, the article of the hybrid random forest, by Groll et al. (2019), reports a ranked

probability score of 0.187. The original article does not report any standard devia-

tions. Our findings are just a little higher 0.190(0.135), but again within the range of

the standard deviations. For the random forest model, by Groll et al. (2018), a ranked

probability score of 0.192 was reported. This within the magnitude of our findings of

0.195(0.136).

Groll et al. (2018, 2019) used multiple extra covariates, to which we had no access

to and they had better data quality for them. This could explain the slightly higher

ranked probability scores found in this master dissertation. For example, the FIFA

34

CHAPTER 3. RESULTS

Figure 3.1: Feature importance of the gradient boost from Baboota and Kaur (2019)

ratings, obtained from Baboota and Kaur (2019), and the age of the players, which

were obtained from https://www.worldfootball.net, proved challenging to merge with

the datasets that contained other the covariates and the match outcomes. This might

explain there lower feature importance of these features in our findings, compared to

the original article (see figure 3.2).

35

3.7. HYBRID MODEL

Figure 3.2: Feature importance of the random forest and hybrid random forest from Groll et al. (2018, 2019)

Figure 3.3: Ranked probability scores reported by Baboota and Kaur (2019)

36

CHAPTER 3. RESULTS

Figure 3.4: Comparison of the models over different scoring rules

37

3.7. HYBRID MODEL

38

CHAPTER 4

DISCUSSION

This chapter discusses the results found in this master dissertation. First, the con-

troversial findings are discussed on a per model basis. After that, we give practical

implications about the models and insights for future research.

4.1 ELO based models

For the ELO based models, our findings exceeded the expectations. We report better

scores for both the Brier and ignorance score, compared to the original article of Hvat-

tum and Arntzen (2010). As mentioned in 3.2, this might be due to the initial burn-in

of five weeks. This burn-in procedure ensures that the models get some information

on the new teams entering the league for that season. It is reasonable to assume that

the estimations for the relative strength of the teams stabilise throughout a season.

The predictions should thus increase in precision in the course of a season. Figure 4.1

shows the linear trends of the average of the scoring rule per week of a season. On

this figure, the expected decrease is only observed for the ELO based model, but not

for the models by Baboota and Kaur (2019).

Figure 4.1: Evolution of the scoring rules during the season of 2012

4.2. PLUS MINUS RATINGS

Another possible reason for our improved findings is the scale on which the ELO rat-

ings are calculated. Hvattum and Arntzen (2010) calculated the ELO ratings over all

the domestic leagues from England, namely the English Premier League, the Cham-

pionship, League One and League Two. We specifically calculated only the ratings for

the English Premier League on a per season basis, as described in section 2.3.2.

The ELO based models were very similar in performance compared to the Poisson

based models. The goal-based ELO mildly outperforms the bivariate Poisson, and the

basic ELO mildly outperforms the basic ELO. One possible reason for this might be the

fact that the ELO based models indirectly got an additional season as data since we

extended the initial protocol with one season to get initial reliable ELO ratings for the

competing teams.

Although comparative studies are relatively absent in the current literature, Egidi

and Torelli (2020) recently published an article where goal-based and result-based

approaches where compared. The article compared two multinomial regression ap-

proaches to an independent and bivariate Poisson model, which were based on the

models from Karlis and Ntzoufras (2003). Egidi and Torelli (2020) report that the

result-based approaches, namely the two multinomial regressions, had higher Bries

scores compared to the Poisson based alternatives. However, when predicting the

World Cup tournament, Egidi and Torelli (2020) showed that the multinomial models

outperformed the Poisson based models, by using the LOOIC (Leave-one-out cross-

validation). The LOOIC is an approach for estimating the pointwise out-of-sample pre-

diction accuracy from a fitted Bayesian model, by using the log-likelihood evaluated

at the posterior simulations of the parameter value (Vehtari et al., 2017).

Egidi and Torelli (2020) point out that the multinomial models are less complex and

that the outcome classes are easier to predict compared to the exact number of goals

scored by each team. On the contrary, Ley et al. (2019) argued that goal-based

models have a better performance since they incorporate additional information as

the goal difference.

4.2 Plus minus ratings

The plus-minus ratings are a top-down rating system, that aims to divide the success

of a team’s performance onto the players responsible for it, which results in ratings

for the individual players. To put this into perspective, for the prediction of the season

2015 a total of 1415 unique players were observed over 2889 matches, which are

further divided into 17820 segments. For every segment, there are only 23 non-zero

40

CHAPTER 4. DISCUSSION

data points over the features. Datasets with such high dimensions often have to deal

with a problem called the curse of dimensionality (Bellman, 2003).

This curse of dimensionality occurs when the number of predictors increases, because

then the distance between the data points increases exponentially. A regularised

approach is thus a necessity for the plus-minus ratings. A potential downside of these

regularised approaches is that they trade the reduction in variance for an increase

in bias, for the parameter estimations. The high amount of parameters to estimate,

in combination with the introduced bias, might explain why the model based on the

plus-minus ratings is underperforming compared to the other models. Player ratings

may thus be noisier compared to direct team ratings and not enhance predictions.

In a more recent study, Arntzen and Hvattum (2020) used an improved version of

the plus-minus ratings, described in Pantuso and Hvattum (2019), as a covariate in

an ordered logit regression. The improved plus-minus rating system also includes

the effect of red cards and the age of the players. Interestingly, it also takes the

differences in competitive leagues and player similarities into account, which allows

for parameter estimation on a much broader scale. The plus-minus ratings might also

become more reliable with an increase in data.

Arntzen and Hvattum (2020) also report that when both the ELO and plus-minus rating

are combined in an ordered logit regression, both the Brier and ignorance score are

significantly reduced, and thus the predictive performance is enhanced.

Finally, figure 4.2 shows that the time depreciation effect used by Arntzen and Hvat-

tum (2020) pays more attention to older observations compared to the models from

Ley et al. (2019) and Boshnakov et al. (2017). These higher weights for older ob-

servations might not be optimal for the small scale comparative study of this master

dissertation.

4.3 Weibull count

Boshnakov et al. (2017) found that the Weibull count model had a better fit to the ob-

served goal distribution compared to the Poisson based alternatives, according to the

AIC criterion. However, this improved fit does not seem to be reflected in its predictive

performance. A possible explanation for this could be that more parsimonious models

are favoured over more complex ones. Ley et al. (2019) found that the independent

and bivariate Poisson with one strength parameter outperformed their counterparts

with two strength parameters, by using the RPS scoring rule.

41

4.4. MACHINE LEARNING MODELS

Figure 4.2: Time delay function for different models

Another possible reason for the lower performance of the Weibull count model is that

it aims to estimate the parameters to have an optimal fit to the observed goal distri-

butions, while the Poisson based models used by Ley et al. (2019) were mainly used to

come up with an effective system to rank the opposing teams relative to each other.

Ley et al. (2019) used some constraints in order to achieve this, e.g. the strengths

of all the opposing teams were set to sum to zero. Boshnakov et al. (2017) did not

use any constraints on the parameter estimations, which might make them unreliable

and prone to learn noise.

4.4 Machine learning models

All the included models in this master dissertation that used more sophisticated ma-

chine learning techniques obtained better predictions. In particular, the models from

Baboota and Kaur (2019) vastly outperformed the other models. The features for the

models by Baboota and Kaur (2019) had better quality compared to the features used

in the models by Groll et al. (2019), because for the features in the model by Groll

et al. (2019) multiple datasets had to be merged by a unique key, which proved to be

difficult. The features used in the models by Baboota and Kaur (2019) are published

on the author’s personal GitHub and were of high quality.

42

CHAPTER 4. DISCUSSION

While most models are solely based on historical data, e.g. for the Poisson based

models two years of data is needed to estimate the current abilities of the opposing

teams, the features of Baboota and Kaur (2019) incorporate a mixture of features

based on historical data (FIFA ranks) and features that capture the recent performance

of a team. The importance of the features that capture the recent performances of

teams might be exciting to investigate further since the scoring rules stayed relatively

stable over the weeks during a season, see figure 4.1, and the variation is much

smaller compared to the other models. The feature importance plots (see figure 3.1)

also show that many of the features that capture the recent performance are essential

for the accuracy of the model.

Interestingly, Baboota and Kaur (2019) give the suggestion to explore the gradient

boosting and random forest regression approaches, which aim to estimate the goal

distributions of each team. Groll et al. (2018) compared the random forest goal-based

model, which predicts the intensity parameter λ for both opposing teams, to a result-

based random forest model, which directly predicts the outcome classes, and found

that the goal-based random forest models performed better than the result-based

alternatives.

4.5 Hybrid models

The feature importance plots on figure 3.2 show the importance of a key engineered

feature, namely the abilities of the teams. This ability parameter significantly in-

creased the accuracy of the model when included, which shows the importance of

incorporating highly informative features.

Both comparative studies and studies that aim at combining different models are

relatively absent from the current literature. The hybrid random forest illustrates that

rather than focusing on unique techniques or new engineered features to enhance

predictions, scholars should focus on ensembled models.

4.6 Practical implications

We consider both the computing time and predictive performance to be valuable when

considering the practical implications of the models. Football match prediction models

are of great interest to decision-makers in the sport, football fans, news reporters and

experts in the field.

43

4.6. PRACTICAL IMPLICATIONS

Although single predictions from all models did not take longer than 45 seconds, when

multiple matches or tournaments have to be predicted, the computation times can

increase rapidly for specific models. The lowest computational time was obtained

with the ELO-based models. The ELO-based models are built upon relatively simple

calculations, which caused predictions of a season to take only a couple of seconds.

Their standard results and swift computational times make them ideal for running

quick simulations. The ELO parameters also proved to be of importance when used

as a covariate in the random forest models from Groll et al. (2018, 2019) (see figure

3.2).

The computational times for the estimation of the ability parameters took around

20 seconds, depending on the amount of historical data incorporated. When mak-

ing multiple predictions, these computational times can increase drastically and take

up several hours. When choosing between the Poisson and ELO-based models, the

ELO-based models are favoured, since they have equal performance with faster com-

putations. However, the ability parameter incorporated in the hybrid random forest

model proved to be the most important covariate. The advantage of the Poisson

based models lies primarily in the creation of this highly informative ranking feature.

We do not recommend using the Weibull count model for predictions, since the com-

putations were demanding and the performance was unsatisfactory. The attack and

defence parameters, estimated as a result of the Weibull count model, could be fur-

ther investigated in a random forest approach, to evaluate if they hold some value.

The random forest and boosting approaches had the best performances. The compu-

tational times were mostly dependent on the number of independent trees that had

to be grown. The models of Baboota and Kaur (2019) only used 100 independent

trees, while Groll et al. (2019) used 5000. Consequently, the individual predictions by

the models of Baboota and Kaur (2019) took less than a second to complete, while

for the models used by Groll et al. (2019) took around 30 seconds.

The plus-minus ratings were very promising, but due to a lack of data availability,

the estimates were unreliable. It seems that for the prediction of football match

outcomes, the player-based ratings can not yet compete with the team based ratings,

and perhaps they are more useful when trying to evaluate the market value of players,

as done in Sæbø and Hvattum (2015). Arntzen and Hvattum (2020) found that the

combination of both the ELO ratings and plus-minus ratings significantly improved the

predictive performance of the models, so it might be worth further investigating the

plus-minus ratings in ensembled techniques.

To conclude, we give table 4.1, which ranks the models based on the performance

and computational time. As mentioned above the more advanced machine learning

44

CHAPTER 4. DISCUSSION

methods outperform the other models based on predictive power. The ELO-based

models have an equal predictive performance as the Poisson-based models but obtain

the results with much lower computational demands. The Weibull count and plus-

minus rating model have the lowest predictive performance. From those two, we gave

the lowest rank to the plus-minus ratings, since it requires much more computational

time. Scholars and researchers in this field mainly try to develop new sophisticated

features to rank the opposing teams or come up with advanced algorithms to predict

football match results. We want to emphasise on the importance of combining various

models and engineered features from the existing literature, which proves, in this

master dissertation, to enhance the predictive power for most models.

Model Performance Computational time Rank
Gradient boost Very good Medium 1
Random forest1 Very good Medium 2
Hybrid random forest Good Medium 3
Random forest2 Good Medium 4
Goal-based ELO Average Fast 5
Basic ELO Average Fast 6
Bivariate Poisson Average Medium 7
Independent Poisson Average Medium 8
Weibull count Bad Slow 9
Plus-minus Bad Very slow 10

Table 4.1: The final ranking of the models.
Random forest1 from Baboota and Kaur (2019) and Random forest2 from Groll et al. (2018)

45

4.6. PRACTICAL IMPLICATIONS

46

BIBLIOGRAPHY

Arntzen, H. and Hvattum, L. M. (2020). Predicting match outcomes in associa-

tion football using team ratings and player ratings. Statistical Modelling, page

1471082X20929881.

Baboota, R. and Kaur, H. (2019). Predictive analysis and modelling football results

using machine learning approach for english premier league. International Journal

of Forecasting, 35(2):741–755.

Baker, R., Boshnakov, G., Kharrat, T., and McHale, I. (2016). Countr: an r package to

generate flexible count models. Journal of Statistical Software.

Bellman, R. (2003). Dynamic programming, 1957. A very comprehensive reference

with many economic examples is.

Boshnakov, G., Kharrat, T., and McHale, I. G. (2017). A bivariate weibull count model

for forecasting association football scores. International Journal of Forecasting,

33(2):458–466.

Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs: I.

the method of paired comparisons. Biometrika, 39(3/4):324–345.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly

weather review, 78(1):1–3.

Bröcker, J. and Smith, L. A. (2007). Scoring probabilistic forecasts: The importance of

being proper. Weather and Forecasting, 22(2):382–388.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Pro-

ceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining, pages 785–794.

Constantinou, A. C. and Fenton, N. E. (2012). Solving the problem of inadequate scor-

ing rules for assessing probabilistic football forecast models. Journal of Quantitative

Analysis in Sports, 8(1).

BIBLIOGRAPHY

Constantinou, A. C. and Fenton, N. E. (2013). Determining the level of ability of football

teams by dynamic ratings based on the relative discrepancies in scores between

adversaries. Journal of Quantitative Analysis in Sports, 9(1):37–50.

Constantinou, A. C., Fenton, N. E., and Neil, M. (2012). pi-football: A bayesian net-

work model for forecasting association football match outcomes. Knowledge-Based

Systems, 36:322–339.

Curley, J. P. (2016). engsoccerdata. English Soccer Data 1871-2016. R package ver-

sion 0.1.5.

Dixon, M. J. and Coles, S. G. (1997). Modelling association football scores and inef-

ficiencies in the football betting market. Journal of the Royal Statistical Society:

Series C (Applied Statistics), 46(2):265–280.

Egidi, L. and Torelli, N. (2020). Comparing goal-based and result-based approaches in

modelling football outcomes. Social Indicators Research, pages 1–13.

Epstein, E. S. (1969). A scoring system for probability forecasts of ranked categories.

Journal of Applied Meteorology, 8(6):985–987.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and

estimation. Journal of the American statistical Association, 102(477):359–378.

Goddard, J. (2005). Regression models for forecasting goals and match results in

association football. International Journal of forecasting, 21(2):331–340.

Groll, A., Ley, C., Schauberger, G., and Van Eetvelde, H. (2018). Prediction of the

fifa world cup 2018-a random forest approach with an emphasis on estimated team

ability parameters. arXiv preprint arXiv:1806.03208.

Groll, A., Ley, C., Schauberger, G., and Van Eetvelde, H. (2019). A hybrid random forest

to predict soccer matches in international tournaments. Journal of Quantitative

Analysis in Sports, 15(4):271–287.

Hvattum, L. M. (2017). Ordinal versus nominal regression models and the problem of

correctly predicting draws in soccer. International Journal of Computer Science in

Sport, 16(1):50–64.

Hvattum, L. M. (2019). A comprehensive review of plus-minus ratings for evaluating

individual players in team sports. International Journal of Computer Science in Sport,

18(1):1–23.

Hvattum, L. M. and Arntzen, H. (2010). Using elo ratings for match result prediction

in association football. International Journal of forecasting, 26(3):460–470.

48

BIBLIOGRAPHY

Joseph, A., Fenton, N. E., and Neil, M. (2006). Predicting football results using

bayesian nets and other machine learning techniques. Knowledge-Based Systems,

19(7):544–553.

Karlis, D. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate pois-

son models. Journal of the Royal Statistical Society: Series D (The Statistician),

52(3):381–393.

Katti, S. and Rao, A. V. (1968). Handbook of the poisson distribution.

Keogh, F. and Rose, G. (2013). Football betting-the global gambling industry worth bil-

lions. BBC, 3rd October, available at: http://www. bbc. com/sport/football/24354124

(accessed 6th July, 2016).

Koning, R. H. (2000). Balance in competition in dutch soccer. Journal of the Royal

Statistical Society: Series D (The Statistician), 49(3):419–431.

Kundu, T., Choudhury, A. R., and Rai, S. (2019). Predicting english premier league

matches using classification and regression.

Ley, C., Wiele, T. V. d., and Eetvelde, H. V. (2019). Ranking soccer teams on the

basis of their current strength: A comparison of maximum likelihood approaches.

Statistical Modelling, 19(1):55–73.

Macdonald, B. (2012). Adjusted plus-minus for nhl players using ridge regression with

goals, shots, fenwick, and corsi. Journal of Quantitative Analysis in Sports, 8(3).

Maher, M. J. (1982). Modelling association football scores. Statistica Neerlandica,

36(3):109–118.

McHale, I. and Scarf, P. (2011). Modelling the dependence of goals scored by opposing

teams in international soccer matches. Statistical Modelling, 11(3):219–236.

Milton, J. (2017). History of sports betting.

Mosteller, F. (2006). Remarks on the method of paired comparisons: I. the least

squares solution assuming equal standard deviations and equal correlations. In

Selected Papers of Frederick Mosteller, pages 157–162. Springer.

Munting, R. (1996). An economic and social history of gambling in Britain and the

USA. Manchester University Press.

Pantuso, G. and Hvattum, L. M. (2019). Maximizing performance with an eye on the

finances: a chance-constrained model for football transfer market decisions. arXiv

preprint arXiv:1911.04689.

Probst, P. and Boulesteix, A.-L. (2017). To tune or not to tune the number of trees in

random forest. The Journal of Machine Learning Research, 18(1):6673–6690.

49

BIBLIOGRAPHY

RightCasino (2014). History of online casinos: infographic.

Sæbø, O. D. and Hvattum, L. M. (2015). Evaluating the efficiency of the associa-

tion football transfer market using regression based player ratings. In Norsk IKT-

konferanse for forskning og utdanning.

Skellam, J. G. (1946). The frequency distribution of the difference between two pois-

son variates belonging to different populations. Journal of the Royal Statistical So-

ciety. Series A (General), 109(Pt 3):296–296.

Stefani, R. T. (1977). Football and basketball predictions using least squares. IEEE

Transactions on systems, man, and cybernetics, 7(2):117–21.

Suzuki, A. K., Salasar, L. E., Leite, J., and Louzada-Neto, F. (2010). A bayesian approach

for predicting match outcomes: the 2006 (association) football world cup. Journal

of the Operational Research Society, 61(10):1530–1539.

Thurstone, L. L. (1927). Psychophysical analysis. The American journal of psychology,

38(3):368–389.

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical bayesian model evaluation us-

ing leave-one-out cross-validation and waic. Statistics and computing, 27(5):1413–

1432.

Wheatcroft, E. (2019). Evaluating probabilistic forecasts of football matches: The case

against the ranked probability score. arXiv preprint arXiv:1908.08980.

50

APPENDIX A

APPENDIX

[Appendix]

A.1 Code for the scoring rules

1 BrierScore <- function(score){

2

3 pwin <- score[1]

4 pdraw <- score[2]

5 ploss <- score[3]

6

7 owin <- score[4]

8 odraw <- score[5]

9 oloss <- score[6]

10

11 brier<- sum((pwin-owin)**2,

12 (pdraw-odraw)**2,

13 (ploss-oloss)**2)

14 return(brier)

15 }

16

17

18 RPS2 <- function(score){

19

20 pwin <- score[1]

21 pdraw <- score[2]

22 ploss <- score[3]

23

24 owin <- score[4]

25 odraw <- score[5]

26 oloss <- score[6]

27

28 rps2<- sum((pwin-owin)**2,

29 (ploss-oloss)**2)

30 return(rps2)

31 }

32

33 IGN <- function(score){

A.1. CODE FOR THE SCORING RULES

34

35 pwin <- score[1]

36 pdraw <- score[2]

37 ploss <- score[3]

38

39 owin <- score[4]

40 odraw <- score[5]

41 oloss <- score[6]

42

43 if (owin == 1) {

44 ignorance <- -log(base = 2,x = pwin)

45 } else

46 if (odraw == 1) {

47 ignorance <- -log(base = 2,x = pdraw)

48 } else ignorance <- -log(base = 2,x = ploss)

49

50 return(ignorance)

51 }

52

53 IGN2 <- function(score){

54

55 pwin <- score[1]

56 pdraw <- score[2]

57 ploss <- score[3]

58

59 owin <- score[4]

60 odraw <- score[5]

61 oloss <- score[6]

62

63 if (owin == 1) {

64 ignorance <- -log(base = 2,x = pwin)

65 } else

66 if (odraw == 1) {

67 ignorance <- -log(x = pdraw)

68 } else ignorance <- -log(base = 2,x = ploss)

69

70 return(ignorance)

71 }

72

73

74

75

76

77

78 RPS <- function(score, outcomes = 3){

79

80 pwin <- score[1]

81 pdraw <- score[2]

82 ploss <- score[3]

52

APPENDIX A. APPENDIX

83

84 p <- c(pwin,pdraw,ploss)

85 p <- unlist(p)

86 p <- unname(p)

87

88 owin <- score[4]

89 odraw <- score[5]

90 oloss <- score[6]

91

92 o <- c(owin,odraw,oloss)

93 o <- unlist(o)

94 o <- unname(o)

95

96 cumulative <- c()

97 for (i in 1:outcomes-1){

98 for (j in 1:i){

99 cumulative <- c(cumulative , (p[j]-o[j])^2)

100 }

101

102 }

103

104 return(sum(cumulative))

105 }

A.2 Code for the ELO based models

A.2.1 basic ELO

1 ##

2 # Using ELO ratings for match result prediction in association football

3 # M. hvattum

4 ##

5

6 # packages

7 {

8 setwd('c:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/models/R scripts/'

)

9 library(engsoccerdata)

10 library(tidyverse)

11 library(skellam)

12 library(caret)

13 library(MASS)

14 source('BrierRpsIgnorance.R')

15 }

16

17 #data

18 {

53

A.2. CODE FOR THE ELO BASED MODELS

19 # Premier League

20 PL_data <- england

21

22 PL_data%>% filter(tier == 1)

23

24

25 data <- PL_data %>%

26 filter(tier == 1,

27 Season %in% 2005:2017)

28

29 }

30

31 # Save output

32 Prob_home <- c()

33 Prob_draw <- c()

34 Prob_away <- c()

35 observed_home <- c()

36 observed_draw <- c()

37 observed_away <- c()

38

39 # algorithm

40 for (season_id in 2008:2015){

41

42 data %>% group_by(Season) %>%

43 summarise(matches = length(Date),

44 team = length(levels(factor(home))))

45

46

47 #make round parameter

48 id <- order(data$Season, data$Date)

49 data <- data[id,]

50 data$round <- rep(sort(rep(1:38,10)), max(data$Season)- min(data$Season) +1)

51

52

53

54 # 1. initial elo ranking

55 {

56 Init_data <- data %>% filter(Season == season_id-3)

57

58

59 teams <- sort(levels(factor(Init_data$home)))

60 elo <- rep(0, length(teams))

61

62 elo_hash <- data.frame(team = teams, elo = elo)

63

64 for (i in 1:nrow(Init_data)){

65

66 # 1 . Hyperparameters

67 c <- 10

54

APPENDIX A. APPENDIX

68 d <- 400

69 k <- 20

70

71 # 2. observation

72 obs <- Init_data[i,]

73

74 elo_home <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)]

75 elo_away <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)]

76 x <- elo_home - elo_away

77

78 E_score_home <- (1+c^(-x/d))^-1

79 E_score_away <- 1 - E_score_home

80

81 actual_score_home <- ifelse(obs$result == 'H' , 1 ,

82 ifelse(obs$result == 'A', 0, 0.5))

83 actual_score_away <- 1 - actual_score_home

84

85 # 3. Update Elo

86 elo_home_update <- elo_home + k*(actual_score_home-E_score_home)

87 elo_away_update <- elo_away + k*(actual_score_away-E_score_away)

88

89 elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)] <- elo_home_

update

90 elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)] <- elo_away_

update

91

92 }

93

94 }

95

96

97 # 2. Training data set

98 {

99 train_data <- data %>%

100 filter(Season %in% (season_id-2):(season_id-1))

101

102 train_data <- rbind(train_data, data %>% filter(Season == season_id,round <= 5)

)

103

104 print('training dataset')

105 print(train_data %>% group_by(Season) %>% summarise(rounds = length(levels(

factor(round)))))

106

107

108 teams <- levels(factor(train_data$home))[!levels(factor(train_data$home)) %in%

elo_hash$team]

109

110 elo_hash <- rbind(elo_hash,

111 data.frame(team = teams,

55

A.2. CODE FOR THE ELO BASED MODELS

112 elo = rep(0,length(teams))))

113

114

115 x_vect <- c()

116 y_vect <- c()

117

118 for (i in 1:nrow(train_data)){

119

120 # 1. Hyperparameters

121 c <- 10

122 d <- 400

123 k <- 20

124

125 # 2. Draw observation and save information

126 obs <- train_data[i,]

127

128 y_vect <- c(y_vect,as.character(obs$result))

129

130 elo_home <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)]

131 elo_away <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)]

132

133 x <- elo_home - elo_away

134 x_vect <- c(x_vect,x)

135

136 E_score_home <- (1+c^(-x/d))^-1

137 E_score_away <- 1 - E_score_home

138

139 actual_score_home <- ifelse(obs$result == 'H' , 1 ,

140 ifelse(obs$result == 'A', 0, 0.5))

141 actual_score_away <- 1 - actual_score_home

142

143 # 3. Update Elo

144 elo_home_update <- elo_home + k*(actual_score_home-E_score_home)

145 elo_away_update <- elo_away + k*(actual_score_away-E_score_away)

146

147 elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)] <- elo_home_

update

148 elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)] <- elo_away_

update

149

150 }

151

152 # Use information for OLR

153 OLR <- polr(formula = 'y~x',

154 data = data.frame(y = factor(y_vect, levels = c('A','D','H'),ordered

= TRUE),

155 x = x_vect))

156

157 summary(OLR)

56

APPENDIX A. APPENDIX

158 }

159

160

161 # 3. Test dataset

162 {

163 test_data <- data %>% filter(Season == season_id,round > 5)

164 print(test_data %>% group_by(Season) %>% summarise(rounds = length(levels(factor

(round)))))

165

166 for (i in 1:nrow(test_data)){

167

168 # 1. Hyper parameters

169 c <- 10

170 d <- 400

171 k <- 20

172

173 # 2. Match to predict

174 obs <- test_data[i,]

175

176 y_vect <- c(y_vect,as.character(obs$result))

177

178 elo_home <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)]

179 elo_away <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)]

180

181 x <- elo_home - elo_away

182 x_vect <- c(x_vect,x)

183

184 # 3. Predict

185 prob <- predict(OLR,

186 newdata = data.frame(y = factor(obs$result, levels = c('A','D'

,'H'),ordered = TRUE),

187 x = x),

188 type = 'p')

189

190 Prob_home <- c(Prob_home,unname(prob['H']))

191 Prob_draw <- c(Prob_draw,unname(prob['D']))

192 Prob_away <- c(Prob_away,unname(prob['A']))

193

194 # 4. observed

195 if (as.character(obs$result) == 'H'){

196 observed_home <- c(observed_home,1)

197 observed_draw <- c(observed_draw,0)

198 observed_away <- c(observed_away,0)

199

200 }

201 else {

202 if (as.character(obs$result) == 'A'){

203 observed_home <- c(observed_home,0)

204 observed_draw <- c(observed_draw,0)

57

A.2. CODE FOR THE ELO BASED MODELS

205 observed_away <- c(observed_away,1)

206

207 }

208 else {

209 observed_home <- c(observed_home,0)

210 observed_draw <- c(observed_draw,1)

211 observed_away <- c(observed_away,0)

212

213 }

214 }

215

216 # 5. Update

217 E_score_home <- (1+c^(-x/d))^-1

218 E_score_away <- 1 - E_score_home

219

220 actual_score_home <- ifelse(obs$result == 'H' , 1 ,

221 ifelse(obs$result == 'A', 0, 0.5))

222 actual_score_away <- 1 - actual_score_home

223

224 elo_home_update <- elo_home + k*(actual_score_home-E_score_home)

225 elo_away_update <- elo_away + k*(actual_score_away-E_score_away)

226

227 elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)] <- elo_home_

update

228 elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)] <- elo_away_

update

229

230 OLR <- polr(formula = 'y~x',

231 data = data.frame(y = factor(y_vect, levels = c('A','D','H'),

ordered = TRUE),

232 x = x_vect))

233 }

234

235 }

236 }

237

238 out <- data.frame(pwin = Prob_home,

239 pdraw = Prob_draw,

240 ploss = Prob_away,

241 owin = observed_home,

242 odraw = observed_draw,

243 oloss = observed_away)

244

245 out$ignorance <- apply(out[,1:6], 1, IGN)

246 out$brierScore <-apply(out[,1:6], 1, BrierScore)

247 out$RPS <- apply(out[,1:6], 1, RPS2)

248

249

250 mean(out$ignorance)

58

APPENDIX A. APPENDIX

251 sd(out$ignorance)

252

253 mean(out$brierScore)

254 sd(out$brierScore)

255

256 mean(out$RPS/2)

257 sd(out$RPS/2)

258

259 saveRDS(object = out,file = 'ELOb_Hvattum2010.rds')

A.2.2 Goal-based ELO

1 ##

2 # Using ELO ratings for match result prediction in association football

3 # M. hvattum

4 ##

5

6 # packages

7 setwd('c:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/models/R scripts/')

8 library(engsoccerdata)

9 library(tidyverse)

10 library(skellam)

11 library(caret)

12 library(MASS)

13 source('BrierRpsIgnorance.R')

14

15

16 # Premier League

17 PL_data <- england

18

19 PL_data%>% filter(tier == 1)

20

21

22 data <- PL_data %>%

23 filter(tier == 1,

24 Season %in% 2005:2017)

25

26

27

28 # Save output

29 Prob_home <- c()

30 Prob_draw <- c()

31 Prob_away <- c()

32 observed_home <- c()

33 observed_draw <- c()

34 observed_away <- c()

35 week <- c()

36

37 # algorithm

59

A.2. CODE FOR THE ELO BASED MODELS

38 for (season_id in 2008:2015){

39

40 data %>% group_by(Season) %>%

41 summarise(matches = length(Date),

42 team = length(levels(factor(home))))

43

44

45 #make round parameter

46 id <- order(data$Season, data$Date)

47 data <- data[id,]

48 data$round <- rep(sort(rep(1:38,10)), max(data$Season)- min(data$Season) +1)

49

50

51

52 # 1. initial elo ranking

53 {

54 Init_data <- data %>% filter(Season == season_id-3)

55

56

57 teams <- sort(levels(factor(Init_data$home)))

58 elo <- rep(0, length(teams))

59

60 elo_hash <- data.frame(team = teams, elo = elo)

61

62 for (i in 1:nrow(Init_data)){

63

64 # 1. observation

65 obs <- Init_data[i,]

66

67 # 2 . Hyperparameters

68 c <- 10

69 d <- 400

70 k0 <- 10

71 lambda <- 1

72 gamma <- abs(obs$hgoal-obs$vgoal)

73 k <- k0*((1+gamma)**lambda)

74

75 # 3. variables

76 elo_home <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)]

77 elo_away <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)]

78 x <- elo_home - elo_away

79

80 E_score_home <- (1+c^(-x/d))^-1

81 E_score_away <- 1 - E_score_home

82

83 actual_score_home <- ifelse(obs$result == 'H' , 1 ,

84 ifelse(obs$result == 'A', 0, 0.5))

85 actual_score_away <- 1 - actual_score_home

86

60

APPENDIX A. APPENDIX

87 # 4. Update Elo

88 elo_home_update <- elo_home + k*(actual_score_home-E_score_home)

89 elo_away_update <- elo_away + k*(actual_score_away-E_score_away)

90

91 elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)] <- elo_home_

update

92 elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)] <- elo_away_

update

93

94 }

95

96 }

97

98

99 # 2. Training data set

100 {

101 train_data <- data %>%

102 filter(Season %in% (season_id-2):(season_id-1))

103

104 train_data <- rbind(train_data, data %>% filter(Season == season_id,round <= 5)

)

105

106 print('training dataset')

107 print(train_data %>% group_by(Season) %>% summarise(rounds = length(levels(

factor(round)))))

108

109

110 teams <- levels(factor(train_data$home))[!levels(factor(train_data$home)) %in%

elo_hash$team]

111

112 elo_hash <- rbind(elo_hash,

113 data.frame(team = teams,

114 elo = rep(0,length(teams))))

115

116

117 x_vect <- c()

118 y_vect <- c()

119

120 for (i in 1:nrow(train_data)){

121

122 # 1. Draw observation and save information

123 obs <- train_data[i,]

124

125 y_vect <- c(y_vect,as.character(obs$result))

126

127 elo_home <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)]

128 elo_away <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)]

129

130 x <- elo_home - elo_away

61

A.2. CODE FOR THE ELO BASED MODELS

131 x_vect <- c(x_vect,x)

132

133 E_score_home <- (1+c^(-x/d))^-1

134 E_score_away <- 1 - E_score_home

135

136 actual_score_home <- ifelse(obs$result == 'H' , 1 ,

137 ifelse(obs$result == 'A', 0, 0.5))

138 actual_score_away <- 1 - actual_score_home

139

140

141 # 2. Hyperparameters

142 c <- 10

143 d <- 400

144 k0 <- 10

145 lambda <- 1

146 gamma <- abs(obs$hgoal-obs$vgoal)

147 k <- k0*((1+gamma)**lambda)

148

149

150 # 3. Update Elo

151 elo_home_update <- elo_home + k*(actual_score_home-E_score_home)

152 elo_away_update <- elo_away + k*(actual_score_away-E_score_away)

153

154 elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)] <- elo_home_

update

155 elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)] <- elo_away_

update

156

157 }

158

159 # Use information for OLR

160 OLR <- polr(formula = 'y~x',

161 data = data.frame(y = factor(y_vect, levels = c('A','D','H'),ordered

= TRUE),

162 x = x_vect))

163

164 summary(OLR)

165 }

166

167

168 # 3. Test dataset

169 {

170 test_data <- data %>% filter(Season == season_id,round > 5)

171 print(test_data %>% group_by(Season) %>% summarise(rounds = length(levels(factor

(round)))))

172

173 for (i in 1:nrow(test_data)){

174

175 week <- c(week,test_data$round)

62

APPENDIX A. APPENDIX

176

177 # 1. Match to predict

178 obs <- test_data[i,]

179

180 y_vect <- c(y_vect,as.character(obs$result))

181

182 elo_home <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)]

183 elo_away <- elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)]

184

185 x <- elo_home - elo_away

186 x_vect <- c(x_vect,x)

187

188 E_score_home <- (1+c^(-x/d))^-1

189 E_score_away <- 1 - E_score_home

190

191 actual_score_home <- ifelse(obs$result == 'H' , 1 ,

192 ifelse(obs$result == 'A', 0, 0.5))

193 actual_score_away <- 1 - actual_score_home

194

195

196

197 # 2. Hyper parameters

198 c <- 10

199 d <- 400

200 k0 <- 10

201 lambda <- 1

202 gamma <- abs(obs$hgoal-obs$vgoal)

203 k <- k0*((1+gamma)**lambda)

204

205

206 # 3. Predict

207 prob <- predict(OLR,

208 newdata = data.frame(y = factor(obs$result, levels = c('A','D'

,'H'),ordered = TRUE),

209 x = x),

210 type = 'p')

211

212 Prob_home <- c(Prob_home,unname(prob['H']))

213 Prob_draw <- c(Prob_draw,unname(prob['D']))

214 Prob_away <- c(Prob_away,unname(prob['A']))

215

216 # 4. observed

217 if (as.character(obs$result) == 'H'){

218 observed_home <- c(observed_home,1)

219 observed_draw <- c(observed_draw,0)

220 observed_away <- c(observed_away,0)

221

222 }

223 else {

63

A.2. CODE FOR THE ELO BASED MODELS

224 if (as.character(obs$result) == 'A'){

225 observed_home <- c(observed_home,0)

226 observed_draw <- c(observed_draw,0)

227 observed_away <- c(observed_away,1)

228

229 }

230 else {

231 observed_home <- c(observed_home,0)

232 observed_draw <- c(observed_draw,1)

233 observed_away <- c(observed_away,0)

234

235 }

236 }

237

238 # 5. Update

239

240 elo_home_update <- elo_home + k*(actual_score_home-E_score_home)

241 elo_away_update <- elo_away + k*(actual_score_away-E_score_away)

242

243 elo_hash$elo[levels(elo_hash$team) == as.character(obs$home)] <- elo_home_

update

244 elo_hash$elo[levels(elo_hash$team) == as.character(obs$visitor)] <- elo_away_

update

245

246 OLR <- polr(formula = 'y~x',

247 data = data.frame(y = factor(y_vect, levels = c('A','D','H'),

ordered = TRUE),

248 x = x_vect))

249 }

250

251 }

252 }

253

254 out <- data.frame(pwin = Prob_home,

255 pdraw = Prob_draw,

256 ploss = Prob_away,

257 owin = observed_home,

258 odraw = observed_draw,

259 oloss = observed_away)

260

261 out$ignorance <- apply(out[,1:6], 1, IGN)

262 out$brierScore <-apply(out[,1:6], 1, BrierScore)

263 out$RPS <- apply(out[,1:6], 1, RPS2)

264

265

266 mean(out$ignorance)

267 sd(out$ignorance)

268

269 mean(out$brierScore)

64

APPENDIX A. APPENDIX

270 sd(out$brierScore)

271

272 mean(out$RPS/2)

273 sd(out$RPS/2)

274

275 saveRDS(object = out,file = 'ELOg_Hvattum2010.rds')

276

277

278

279 ####################

280 #plot

281

282 out <- data.frame(pwin = Prob_home,

283 pdraw = Prob_draw,

284 ploss = Prob_away,

285 owin = observed_home,

286 odraw = observed_draw,

287 oloss = observed_away,

288 week = week)

289

290 out$IgnoranceScore <- apply(out[,1:6], 1, IGN)

291 out$BrierScore <-apply(out[,1:6], 1, BrierScore)

292 out$RankedProbScore <- apply(out[,1:6], 1, RPS2)

293

294

295 out$Model <- 'out'

296 out <- out[,c('IgnoranceScore','BrierScore','RankedProbScore', 'week')] %>% gather(

key = 'ScoringRule' , value = 'Score',IgnoranceScore:RankedProbScore)

297

298 p <- out %>%

299 ggplot(aes(x= week, y=Score, color = ScoringRule, fill = ScoringRule)) +

300 #geom_point(alpha = 0.25) +

301 geom_smooth(method='glm',se = F)+

302 theme_bw() +

303 labs(x = 'Week',

304 y ='Score',

305 title = 'Evolution of the scoring rules over season 2012',

306 color = 'Scoring rule',

307 fill = 'Scoring rule') +

308 theme(plot.title = element_text(hjust = 0.5))

309 p

310 ggsave(plot = p, 'scorerulee.png',height = 4,width = 5.2)

A.3 Code for the plus-minus models

A.3.1 Plus-minus

65

A.3. CODE FOR THE PLUS-MINUS MODELS

1 ##

2 # Player Ratings

3 # M. hvattum

4 ##

5

6 # packages

7 {

8 setwd('c:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/models/R scripts/'

)

9 library(engsoccerdata)

10 library(tidyverse)

11 library(skellam)

12 library(caret)

13 library(MASS)

14 source('BrierRpsIgnorance.R')

15 }

16

17 # data

18 {

19

20 load('eplhvattum.Rdata')

21 data <- data1

22 str(data)

23 data <- data[data$date <= as.Date('2016-05-16'),]

24

25

26 # current times

27 # Premier League

28 PL_data <- england

29

30 PL_data <- PL_data%>% filter(tier == 1,

31 Season %in% 2000:2017)

32

33 id <- order(PL_data$Season, PL_data$Date)

34 PL_data <- PL_data[id,]

35 PL_data$round <- rep(sort(rep(1:38,10)), max(PL_data$Season)- min(PL_data$Season)

+1)

36 DataSeasonRound <- unique(PL_data[,c('Date','Season','round')])

37 colnames(DataSeasonRound) <- c('date','season','round')

38 DataSeasonRound$date <- as.Date(DataSeasonRound$date)

39

40 data$Season <- DataSeasonRound$season[match(data$date,DataSeasonRound$date)]

41 data$round <- DataSeasonRound$round[match(data$date,DataSeasonRound$date)]

42

43 }

44

45 # functions

46 {

47 SplitSegments <- function(obs){

66

APPENDIX A. APPENDIX

48

49 # information

50 {

51 # player changes

52 {

53 playerChanges <- data.frame(time = c(obs$home_change_minute1,obs$home_change

_minute2,obs$home_change_minute3,

54 obs$away_change_minute1,obs$away_change

_minute2,obs$away_change_minute3),

55 athleteIn = c(obs$home_change_in1,obs$home_

change_in2,obs$home_change_in3,

56 obs$away_change_in1,obs$away_

change_in2,obs$away_change_

minute3),

57 athleteOut = c(obs$home_change_out1,obs$home_

change_out2,obs$home_change_out3,

58 obs$away_change_out1,obs$away_

change_out2,obs$away_change_

out3))

59

60 playerChanges <- playerChanges[order(playerChanges$time),]

61 playerChanges <- na.omit(playerChanges)

62 }

63

64 # goal changes

65 {

66

67 Goalchanges <- data.frame(goals = c(obs$home_goal_minute1,obs$home_goal_

minute2,obs$home_goal_minute3,

68 obs$home_goal_minute4,obs$home_goal_

minute5,obs$home_goal_minute6,

69 obs$home_goal_minute7,obs$home_goal_

minute8,obs$home_goal_minute9,

70 obs$away_goal_minute1,obs$away_goal_

minute2),

71 team = c(rep('home',9),rep('away',2)))

72 Goalchanges <- Goalchanges[order(Goalchanges$goals),]

73 Goalchanges <- na.omit(Goalchanges)

74 }

75

76

77 # params

78 {

79 segments <- list()

80 start <- 0

81 time <- 0

82 }

83

84 #players

67

A.3. CODE FOR THE PLUS-MINUS MODELS

85 {

86 players <- unique(c(levels(obs$home_team_player1),levels(obs$home_team_

player2),levels(obs$home_team_player3),levels(obs$home_team_player4),

87 levels(obs$home_team_player5),levels(obs$home_team_

player6),levels(obs$home_team_player7),levels(obs$

home_team_player8),

88 levels(obs$home_team_player9),levels(obs$home_team_

player10),levels(obs$home_team_player11)))

89

90 matrix_players <- t(matrix(c(players, rep(0,length(players))),ncol = 2))

91

92 home_players <- c(as.character(obs$home_team_player1),as.character(obs$home_

team_player2),as.character(obs$home_team_player3),

93 as.character(obs$home_team_player4),as.character(obs$home_

team_player5),as.character(obs$home_team_player6),

94 as.character(obs$home_team_player7),as.character(obs$home_

team_player8),as.character(obs$home_team_player9),

95 as.character(obs$home_team_player10),as.character(obs$home

_team_player11))

96 away_players <- c(as.character(obs$away_team_player1),as.character(obs$away_

team_player2),as.character(obs$away_team_player3),

97 as.character(obs$away_team_player4),as.character(obs$away_

team_player5),as.character(obs$away_team_player6),

98 as.character(obs$away_team_player7),as.character(obs$away_

team_player8),as.character(obs$away_team_player9),

99 as.character(obs$away_team_player10),as.character(obs$away

_team_player11))

100

101 matrix_players[2,match(home_players,matrix_players[1,])] <- 1

102 matrix_players[2,match(away_players,matrix_players[1,])] <- -1

103

104 }

105

106 }

107

108

109 if (nrow(playerChanges) > 0){

110 for (i in 1:(nrow(playerChanges))){

111

112 #segment duration

113 end <- playerChanges$time[i]

114 duration <- end - start

115 start <- end

116 if (duration == 0) duration <- 1

117

118 #goals

119 starttime <- time

120 time <- time + duration

121 endtime <- time

68

APPENDIX A. APPENDIX

122 goals_start <- sum(ifelse(Goalchanges$team[Goalchanges$goals<starttime] == '

home' , 1,-1))

123 goals_end <- sum(ifelse(Goalchanges$team[Goalchanges$goals<endtime] == 'home

' , 1,-1))

124 gd <- goals_end - goals_start

125

126 #beta

127 beta <- 90*gd/duration

128

129 #players

130 a <- as.numeric(matrix_players[2,])

131

132

133 # red cards

134

135

136 # age

137

138

139 #home

140 homeeffect <- 1

141

142 # add to segment list

143 segment <- data.frame(matrix(c(beta,a,homeeffect,as.Date(obs$date),obs$

Season,obs$round),nrow=1))

144 colnames(segment) <- c('beta',matrix_players[1,],'homeadv','date','Season',

'round')

145 segments[[paste0('segment',i)]] <- segment

146

147 # update players

148 if (as.character(playerChanges$athleteOut[i]) %in% away_players){

149 away_players[match(as.character(playerChanges$athleteOut[i]),away_players)

] <- as.character(playerChanges$athleteIn[i])

150 }

151 if (as.character(playerChanges$athleteOut[i]) %in% home_players){

152 home_players[match(as.character(playerChanges$athleteOut[i]),home_players)

] <- as.character(playerChanges$athleteIn[i])

153 }

154

155 matrix_players <- t(matrix(c(players, rep(0,length(players))),ncol = 2))

156 matrix_players[2,match(home_players,matrix_players[1,])] <- 1

157 matrix_players[2,match(away_players,matrix_players[1,])] <- -1

158

159 }

160 }

161 else { i <-1 }

162

163 # last segment

164 {

69

A.3. CODE FOR THE PLUS-MINUS MODELS

165 #segment duration

166 end <- 90

167 duration <- end - start

168 start <- end

169 if (duration == 0) duration <- 1

170 #goals

171 starttime <- time

172 time <- time + duration

173 endtime <- time

174 goals_start <- sum(ifelse(Goalchanges$team[Goalchanges$goals<starttime] == '

home' , 1,-1))

175 goals_end <- sum(ifelse(Goalchanges$team[Goalchanges$goals<endtime] == 'home'

, 1,-1))

176 gd <- goals_end - goals_start

177

178 #beta

179 beta <- 90*gd/duration

180

181 #players

182 a <- as.numeric(matrix_players[2,])

183

184 # red cards

185

186

187 # age

188

189

190 #home

191 homeeffect <- 1

192

193 segment <- data.frame(matrix(c(beta,a,homeeffect,obs$date,obs$Season,obs$round

),nrow=1))

194 colnames(segment) <- c('beta',matrix_players[1,],'homeadv','date','Season','

round')

195 segments[[paste0('segment',i+1)]] <- segment

196

197 }

198

199 return(segments)

200 }

201 }

202

203 #split data in segments

204 {

205 df <- data

206 df$home_team_player1 <- factor(df$home_team_player1)

207 df$home_team_player2 <- factor(df$home_team_player2)

208 df$home_team_player3 <- factor(df$home_team_player3)

209 df$home_team_player4 <- factor(df$home_team_player4)

70

APPENDIX A. APPENDIX

210 df$home_team_player5 <- factor(df$home_team_player5)

211 df$home_team_player6 <- factor(df$home_team_player6)

212 df$home_team_player7 <- factor(df$home_team_player7)

213 df$home_team_player8 <- factor(df$home_team_player8)

214 df$home_team_player9 <- factor(df$home_team_player9)

215 df$home_team_player10 <- factor(df$home_team_player10)

216 df$home_team_player11 <- factor(df$home_team_player11)

217

218 df$away_team_player1 <- factor(df$away_team_player1)

219 df$away_team_player2 <- factor(df$away_team_player2)

220 df$away_team_player3 <- factor(df$away_team_player3)

221 df$away_team_player4 <- factor(df$away_team_player4)

222 df$away_team_player5 <- factor(df$away_team_player5)

223 df$away_team_player6 <- factor(df$away_team_player6)

224 df$away_team_player7 <- factor(df$away_team_player7)

225 df$away_team_player8 <- factor(df$away_team_player8)

226 df$away_team_player9 <- factor(df$away_team_player9)

227 df$away_team_player10 <- factor(df$away_team_player10)

228 df$away_team_player11 <- factor(df$away_team_player11)

229 #str(df)

230

231 seglist <- list()

232 for (id in 1:nrow(df)){

233 obs <- df[id,]

234 segments <- SplitSegments(obs)

235 segdf <- do.call(rbind, segments)

236 seglist[[as.character(id)]] <- segdf

237 }

238

239 df <- do.call(rbind, seglist)

240 }

241

242

243 df_2015 <- df %>% filter(Season %in% 2008:2015)

244 data2015 <- data %>% filter(Season %in% 2008:2015)

245

246 # Save output

247 Prob_home <- c()

248 Prob_draw <- c()

249 Prob_away <- c()

250 observed <- c()

251

252 # algorithm

253 yrsago <- 4

254 for (season_id in 2008:2015){

255

256 # train data

257 train_data <- data %>% filter(Season %in% (season_id-2):(season_id-1))

258

71

A.3. CODE FOR THE PLUS-MINUS MODELS

259 train_data <- rbind(train_data, data %>% filter(Season == season_id,round <= 5))

260 train_data$seasonround <- paste0(train_data$Season,train_data$round)

261

262 print('training dataset')

263 print(train_data %>% group_by(Season) %>% summarise(rounds = length(levels(factor(

round)))))

264

265 ## get results and pm

266 train_results <- c()

267 train_pm <- c()

268 for (i in 1:length(unique(train_data$seasonround))){

269

270 #train obs

271 train_obs <- train_data[train_data$seasonround==unique(train_data$seasonround)[

i],]

272

273 print(paste('train',train_obs$Season[1],i))

274 currenttime <- max(train_obs$date)

275

276 # df of all segments before current time

277 {

278 df_seg_train <- df %>% filter((date <= currenttime)&((date >= currenttime -

yrsago*365)))

279 k <- 0.2

280 time_depre <- exp(-k*(as.numeric(currenttime) - df_seg_train$date)/365)

281 }

282

283 # get coefficients

284 {

285 beta <- df_seg_train$beta*time_depre

286

287 a <- as.matrix(df_seg_train[,-c(match('beta',colnames(df_seg_train)),

288 match('Season',colnames(df_seg_train)),

289 match('date',colnames(df_seg_train)),

290 match('round',colnames(df_seg_train)))])

291

292 a <- a * time_depre

293

294

295 lambda <- 3000

296 x <- solve(t(a) %*% a + diag(lambda,ncol(a))) %*% t(a) %*% beta

297 }

298

299 # for every obs of in currenttime get result and difference in pm of teams

300 {

301 gd <- train_obs$home_goals - train_obs$away_goals

302 result <- ifelse(gd < 0, 'A', ifelse(gd == 0, 'D', 'H'))

303 train_results <- c(train_results,result)

304

72

APPENDIX A. APPENDIX

305 x_home_player1 <- x[match(as.character(train_obs$home_team_player1),rownames(x

))]

306 x_home_player2 <- x[match(as.character(train_obs$home_team_player2),rownames(x

))]

307 x_home_player3 <- x[match(as.character(train_obs$home_team_player3),rownames(x

))]

308 x_home_player4 <- x[match(as.character(train_obs$home_team_player4),rownames(x

))]

309 x_home_player5 <- x[match(as.character(train_obs$home_team_player5),rownames(x

))]

310 x_home_player6 <- x[match(as.character(train_obs$home_team_player6),rownames(x

))]

311 x_home_player7 <- x[match(as.character(train_obs$home_team_player7),rownames(x

))]

312 x_home_player8 <- x[match(as.character(train_obs$home_team_player8),rownames(x

))]

313 x_home_player9 <- x[match(as.character(train_obs$home_team_player9),rownames(x

))]

314 x_home_player10 <- x[match(as.character(train_obs$home_team_player10),rownames

(x))]

315 x_home_player11 <- x[match(as.character(train_obs$home_team_player11),rownames

(x))]

316 x_home_player12 <- x[match(rep('homeadv',nrow(train_obs)),rownames(x))]

317 x_home <- apply(matrix(c(x_home_player1,x_home_player2,x_home_player3,

318 x_home_player4,x_home_player5,x_home_player6,

319 x_home_player7,x_home_player8,x_home_player9,

320 x_home_player10,x_home_player11,x_home_player12),

321 ncol = 12),

322 1, mean,na.rm = TRUE)

323 x_home[is.na(x_home)] <- 0

324

325 x_away_player1 <- x[match(as.character(train_obs$away_team_player1),rownames(x

))]

326 x_away_player2 <- x[match(as.character(train_obs$away_team_player2),rownames(x

))]

327 x_away_player3 <- x[match(as.character(train_obs$away_team_player3),rownames(x

))]

328 x_away_player4 <- x[match(as.character(train_obs$away_team_player4),rownames(x

))]

329 x_away_player5 <- x[match(as.character(train_obs$away_team_player5),rownames(x

))]

330 x_away_player6 <- x[match(as.character(train_obs$away_team_player6),rownames(x

))]

331 x_away_player7 <- x[match(as.character(train_obs$away_team_player7),rownames(x

))]

332 x_away_player8 <- x[match(as.character(train_obs$away_team_player8),rownames(x

))]

333 x_away_player9 <- x[match(as.character(train_obs$away_team_player9),rownames(x

))]

73

A.3. CODE FOR THE PLUS-MINUS MODELS

334 x_away_player10 <- x[match(as.character(train_obs$away_team_player10),rownames

(x))]

335 x_away_player11 <- x[match(as.character(train_obs$away_team_player11),rownames

(x))]

336 x_away <- apply(matrix(c(x_away_player1,x_away_player2,x_away_player3,

337 x_away_player4,x_away_player5,x_away_player6,

338 x_away_player7,x_away_player8,x_away_player9,

339 x_away_player10,x_away_player11),

340 ncol = 11),

341 1, mean,na.rm = TRUE)

342 x_away[is.na(x_away)] <- 0

343

344 pmdiff <- x_home - x_away

345 train_pm <- c(train_pm,pmdiff)

346 }

347

348 }

349

350 # Use information for OLR

351 OLR <- polr(formula = 'result~pmdiff',

352 data = data.frame(result = factor(train_results, levels = c('A','D','H

'),ordered = TRUE),

353 pmdiff = train_pm))

354

355

356 # test data

357 test_data <- data %>% filter(Season == season_id,round > 5)

358 print(test_data %>% group_by(Season) %>% summarise(rounds = length(levels(factor(

round)))))

359

360 for(round_id in 6:max(test_data$round)){

361

362

363 #obs

364 obs_test <- test_data %>% filter(round == round_id)

365 print(paste('test',obs_test$Season[1],round_id))

366

367 # for every obs of in currenttime get result and prob

368 {

369 gd <- obs_test$home_goals - obs_test$away_goals

370 result <- ifelse(gd < 0, 'A', ifelse(gd == 0, 'D', 'H'))

371 #train_results <- c(train_results,result)

372

373 x_home_player1 <- x[match(as.character(obs_test$home_team_player1),rownames(x)

)]

374 x_home_player2 <- x[match(as.character(obs_test$home_team_player2),rownames(x)

)]

375 x_home_player3 <- x[match(as.character(obs_test$home_team_player3),rownames(x)

)]

74

APPENDIX A. APPENDIX

376 x_home_player4 <- x[match(as.character(obs_test$home_team_player4),rownames(x)

)]

377 x_home_player5 <- x[match(as.character(obs_test$home_team_player5),rownames(x)

)]

378 x_home_player6 <- x[match(as.character(obs_test$home_team_player6),rownames(x)

)]

379 x_home_player7 <- x[match(as.character(obs_test$home_team_player7),rownames(x)

)]

380 x_home_player8 <- x[match(as.character(obs_test$home_team_player8),rownames(x)

)]

381 x_home_player9 <- x[match(as.character(obs_test$home_team_player9),rownames(x)

)]

382 x_home_player10 <- x[match(as.character(obs_test$home_team_player10),rownames(

x))]

383 x_home_player11 <- x[match(as.character(obs_test$home_team_player11),rownames(

x))]

384 x_home_player12 <- x[match(rep('homeadv',nrow(obs_test)),rownames(x))]

385 x_home <- apply(matrix(c(x_home_player1,x_home_player2,x_home_player3,

386 x_home_player4,x_home_player5,x_home_player6,

387 x_home_player7,x_home_player8,x_home_player9,

388 x_home_player10,x_home_player11,x_home_player12),

389 ncol = 12),

390 1, mean,na.rm = TRUE)

391 x_home[is.na(x_home)] <- 0

392

393 x_away_player1 <- x[match(as.character(obs_test$away_team_player1),rownames(x)

)]

394 x_away_player2 <- x[match(as.character(obs_test$away_team_player2),rownames(x)

)]

395 x_away_player3 <- x[match(as.character(obs_test$away_team_player3),rownames(x)

)]

396 x_away_player4 <- x[match(as.character(obs_test$away_team_player4),rownames(x)

)]

397 x_away_player5 <- x[match(as.character(obs_test$away_team_player5),rownames(x)

)]

398 x_away_player6 <- x[match(as.character(obs_test$away_team_player6),rownames(x)

)]

399 x_away_player7 <- x[match(as.character(obs_test$away_team_player7),rownames(x)

)]

400 x_away_player8 <- x[match(as.character(obs_test$away_team_player8),rownames(x)

)]

401 x_away_player9 <- x[match(as.character(obs_test$away_team_player9),rownames(x)

)]

402 x_away_player10 <- x[match(as.character(obs_test$away_team_player10),rownames(

x))]

403 x_away_player11 <- x[match(as.character(obs_test$away_team_player11),rownames(

x))]

404 x_away <- apply(matrix(c(x_away_player1,x_away_player2,x_away_player3,

405 x_away_player4,x_away_player5,x_away_player6,

75

A.3. CODE FOR THE PLUS-MINUS MODELS

406 x_away_player7,x_away_player8,x_away_player9,

407 x_away_player10,x_away_player11),

408 ncol = 11),

409 1, mean,na.rm = TRUE)

410

411 pmdiff <- x_home - x_away

412 prob <- predict(OLR,

413 newdata = data.frame(result = factor(result, levels = c('A','D

','H'),ordered = TRUE),

414 pmdiff = pmdiff),

415 type = 'p')

416

417 Prob_home <- c(Prob_home, as.numeric(prob[,3]))

418 Prob_draw <- c(Prob_draw, as.numeric(prob[,2]))

419 Prob_away <- c(Prob_away, as.numeric(prob[,1]))

420 observed <- c(observed,result)

421

422 }

423

424 # add test to train and update coefficients

425 train_data$seasonround <- NULL

426 train_data <- rbind(train_data,obs_test)

427

428 currenttime <- max(train_data$date)

429

430 {

431 df_seg_train <- df %>% filter((date <= currenttime)&((date >= currenttime -

yrsago*365)))

432 k <- 0.2

433 time_depre <- exp(-k*(as.numeric(currenttime) - df_seg_train$date)/365)

434 }

435

436 # get coefficients

437 {

438 beta <- df_seg_train$beta*time_depre

439

440 a <- as.matrix(df_seg_train[,-c(match('beta',colnames(df_seg_train)),

441 match('Season',colnames(df_seg_train)),

442 match('date',colnames(df_seg_train)),

443 match('round',colnames(df_seg_train)))])

444

445 a <- a * time_depre

446

447

448 lambda <- 3000

449 x <- solve(t(a) %*% a + diag(lambda,ncol(a))) %*% t(a) %*% beta

450 }

451

452 # for every obs of in currenttime get result and difference in pm of teams

76

APPENDIX A. APPENDIX

453 {

454 gd <- obs_test$home_goals - obs_test$away_goals

455 result <- ifelse(gd < 0, 'A', ifelse(gd == 0, 'D', 'H'))

456 train_results <- c(train_results,result)

457

458 x_home_player1 <- x[match(as.character(obs_test$home_team_player1),rownames(x)

)]

459 x_home_player2 <- x[match(as.character(obs_test$home_team_player2),rownames(x)

)]

460 x_home_player3 <- x[match(as.character(obs_test$home_team_player3),rownames(x)

)]

461 x_home_player4 <- x[match(as.character(obs_test$home_team_player4),rownames(x)

)]

462 x_home_player5 <- x[match(as.character(obs_test$home_team_player5),rownames(x)

)]

463 x_home_player6 <- x[match(as.character(obs_test$home_team_player6),rownames(x)

)]

464 x_home_player7 <- x[match(as.character(obs_test$home_team_player7),rownames(x)

)]

465 x_home_player8 <- x[match(as.character(obs_test$home_team_player8),rownames(x)

)]

466 x_home_player9 <- x[match(as.character(obs_test$home_team_player9),rownames(x)

)]

467 x_home_player10 <- x[match(as.character(obs_test$home_team_player10),rownames(

x))]

468 x_home_player11 <- x[match(as.character(obs_test$home_team_player11),rownames(

x))]

469 x_home_player12 <- x[match(rep('homeadv',nrow(obs_test)),rownames(x))]

470 x_home <- apply(matrix(c(x_home_player1,x_home_player2,x_home_player3,

471 x_home_player4,x_home_player5,x_home_player6,

472 x_home_player7,x_home_player8,x_home_player9,

473 x_home_player10,x_home_player11,x_home_player12),

474 ncol = 12),

475 1, mean,na.rm = TRUE)

476 x_home[is.na(x_home)] <- 0

477

478 x_away_player1 <- x[match(as.character(obs_test$away_team_player1),rownames(x)

)]

479 x_away_player2 <- x[match(as.character(obs_test$away_team_player2),rownames(x)

)]

480 x_away_player3 <- x[match(as.character(obs_test$away_team_player3),rownames(x)

)]

481 x_away_player4 <- x[match(as.character(obs_test$away_team_player4),rownames(x)

)]

482 x_away_player5 <- x[match(as.character(obs_test$away_team_player5),rownames(x)

)]

483 x_away_player6 <- x[match(as.character(obs_test$away_team_player6),rownames(x)

)]

77

A.3. CODE FOR THE PLUS-MINUS MODELS

484 x_away_player7 <- x[match(as.character(obs_test$away_team_player7),rownames(x)

)]

485 x_away_player8 <- x[match(as.character(obs_test$away_team_player8),rownames(x)

)]

486 x_away_player9 <- x[match(as.character(obs_test$away_team_player9),rownames(x)

)]

487 x_away_player10 <- x[match(as.character(obs_test$away_team_player10),rownames(

x))]

488 x_away_player11 <- x[match(as.character(obs_test$away_team_player11),rownames(

x))]

489 x_away <- apply(matrix(c(x_away_player1,x_away_player2,x_away_player3,

490 x_away_player4,x_away_player5,x_away_player6,

491 x_away_player7,x_away_player8,x_away_player9,

492 x_away_player10,x_away_player11),

493 ncol = 11),

494 1, mean,na.rm = TRUE)

495

496 pmdiff <- x_home - x_away

497 train_pm <- c(train_pm,pmdiff)

498 }

499

500 # Use information for OLR

501 OLR <- polr(formula = 'result~pmdiff',

502 data = data.frame(result = factor(train_results, levels = c('A','D',

'H'),ordered = TRUE),

503 pmdiff = train_pm))

504

505

506 }

507

508 }

509

510

511 score <- data.frame(observed = factor(observed, levels = c('H', 'D', 'A')),

512 win = Prob_home,

513 draw = Prob_draw,

514 loss = Prob_away)

515

516

517 saveRDS(object = score,file = 'PM_hvattum4y_new.rds')

518

519

520 #get scores

521

522 score <- readRDS('PM_hvattum4y_new.rds')

523 score$observed_win <- ifelse(score$observed == 'H', 1 , 0)

524 score$observed_draw <- ifelse(score$observed == 'D', 1 , 0)

525 score$observed_loss <- ifelse(score$observed == 'A', 1 , 0)

526

78

APPENDIX A. APPENDIX

527 score$IgnoranceScore <- apply(score[,2:7], 1, IGN)

528 score$BrierScore <-apply(score[,2:7], 1, BrierScore)

529 score$RPS <- apply(score[,2:7], 1, RPS2)

530

531

532 mean(score$IgnoranceScore)

533 sd(score$IgnoranceScore)

534

535 mean(score$BrierScore)

536 sd(score$BrierScore)

537

538 mean(score$RPS/2)

539 sd(score$RPS/2)

540

541 nrow(score)

542

543 s <- score[-c(2405:2466),]

544

545 mean(s$IgnoranceScore)

546 sd(s$IgnoranceScore)

547

548 mean(s$BrierScore)

549 sd(s$BrierScore)

550

551 mean(s$RPS/2)

552 sd(s$RPS/2)

553

554

555 s<- summary(OLR)

556 xtable(s$coefficients)

A.4 Code for the Poisson based models

A.4.1 Independent Poisson

1 ##

2 # Ranking soccer teams on current strength: MLE approach

3 # C. Ley

4 ##

5

6 # packages

7 {

8 setwd('c:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/models/R scripts/')

9 library(engsoccerdata)

10 library(tidyverse)

11 library(skellam)

12 library(caret)

79

A.4. CODE FOR THE POISSON BASED MODELS

13 source('BrierRpsIgnorance.R')

14 }

15

16 #DATA

17 {

18 # Premier League

19 PL_data <- england

20

21

22 # Data cleaning

23

24 # filter for right dataset

25 data <- PL_data %>%

26 filter(tier == 1,

27 Season %in% 2006:2017)

28

29 data %>% group_by(Season) %>%

30 summarise(matches = length(Date),

31 team = length(levels(factor(home))))

32

33

34 #make round parameter

35 id <- order(data$Season, data$Date)

36 data <- data[id,]

37 data$round <- rep(sort(rep(1:38,10)), max(data$Season)- min(data$Season) +1)

38 }

39

40 #likelihood function

41

42 indeppoiss.mle <- function(par, data){

43

44 #parameters from data

45 teams <- sort(levels(factor(data$home)))

46 gi <- data$hgoal

47 gj <- data$vgoal

48 hteam <- as.character(data$home)

49 vteam <- as.character(data$visitor)

50

51 #restrictions

52 c <- abs(par[1])

53 h <- abs(par[2])

54 strength <- par[3:(length(par))]

55 last_strength <- -sum(strength)

56 strength <- c(strength, last_strength)

57

58 #features for likelihood

59 ri <- strength[match(hteam, teams)]

60 rj <- strength[match(vteam, teams)]

61

80

APPENDIX A. APPENDIX

62 lambda_i <- exp(c + (ri+h)-(rj))

63 lambda_j <- exp(c + (rj)-(ri+h))

64

65 date <- as.Date(data$Date)

66 x <- as.numeric(max(as.Date(data$Date)) - date)

67 halfperiod <- 360

68 wtime <- 0.5 ^ (x/halfperiod)

69

70

71 lambda_i_exp_gi <- apply(matrix(c(lambda_i,gi),ncol = 2), 1,function(a){return(a

[1]**a[2])})

72 rev_fact_gi <- 1/(factorial(gi))

73 exp_neg_lambda_i <- exp(-lambda_i)

74

75 lambda_j_exp_gj <- apply(matrix(c(lambda_j,gj),ncol = 2), 1,function(a){return(a

[1]**a[2])})

76 rev_fact_gj <- 1/(factorial(gj))

77 exp_neg_lambda_j <- exp(-lambda_j)

78

79 matrix <- matrix(c(lambda_i_exp_gi,

80 rev_fact_gi,

81 exp_neg_lambda_i,

82 lambda_j_exp_gj,

83 rev_fact_gj,

84 exp_neg_lambda_j),

85 ncol=6)

86

87 densities <- apply(matrix, MARGIN = 1, FUN = prod)

88 densities <- apply(matrix(c(densities,wtime),ncol = 2), 1,function(a){return(a[1]*

*a[2])})

89 return(-sum(log(densities)))

90

91 }

92

93

94 # 2008:max(season)

95

96 predict <- c()

97 observed <- c()

98

99 p_win <- p_draw <- p_loss <- c()

100 HAD <- c('H','D', 'A')

101

102 for (season_id in 2008:max(data$Season)){

103

104 # datasets

105

106 train_data <- data %>%

107 filter(Season %in% (season_id-2):(season_id-1))

81

A.4. CODE FOR THE POISSON BASED MODELS

108

109 train_data <- rbind(train_data, data %>% filter(Season == season_id,round <= 5))

110

111 print('training dataset')

112 print(train_data %>% group_by(as.character(Season)) %>% summarise(rounds = length(

levels(factor(round)))))

113

114 test <- data %>% filter(Season == season_id,round > 5)

115

116 print(test %>% group_by(Season) %>% summarise(rounds = length(levels(factor(round)

))))

117

118 teams <- sort(unique(c(levels(factor(train_data$home)),levels(factor(train_data$

visitor)))))

119

120 # initialize prediction

121

122 par <- c(1,1,rep(0,length(levels(factor(train_data$home)))-1))

123 par_optim <- optim(par = par,fn = indeppoiss.mle, data = train_data,gr = "BFGS")

124 par_optim

125

126 # predict

127

128 for (i in 6:max(test$round)){

129

130 # 1. MLE based on updated train_data

131 par_optim <- optim(par = par,fn = indeppoiss.mle, data = train_data,gr = "BFGS")

132

133 # 2. Parameter extraction

134 par <- par_optim$par

135

136 c <- abs(par[1])

137 h <- abs(par[2])

138

139 strength <- par[3:(length(par))]

140 last_strength <- -sum(strength)

141 strength <- c(strength, last_strength)

142

143 teams <- sort(unique(c(levels(factor(train_data$home)),levels(factor(train_data$

visitor)))))

144

145

146 # 3. Parameters from test_data (observed)

147 t <- test %>% filter(round == i)

148 gi <- t$hgoal

149 gj <- t$vgoal

150 hteam <- as.character(t$home)

151 vteam <- as.character(t$visitor)

152

82

APPENDIX A. APPENDIX

153 # 4. Features

154 ri <- strength[match(hteam, teams)]

155 rj <- strength[match(vteam, teams)]

156

157 lambda_i <- exp(c + (ri+h)-(rj))

158 lambda_j <- exp(c + (rj)-(ri+h))

159

160

161 # 5. Predict loss, draw, win

162 loss <- pskellam(q = -1,

163 lambda1 = lambda_i,

164 lambda2 = lambda_j)

165

166

167 draw <- dskellam(x = 0,

168 lambda1 = lambda_i,

169 lambda2 = lambda_j)

170

171

172 win <- 1-pskellam(q = 0,

173 lambda1 = lambda_i,

174 lambda2 = lambda_j)

175

176

177 p_win <- c(p_win, win)

178 p_draw <- c(p_draw, draw)

179 p_loss <- c(p_loss, loss)

180 # 6. Save predictions

181 observed <- c(observed, as.character(t$result))

182

183 # 7. Update train data

184 train_data <- rbind(train_data, t)

185 print(paste(season_id,i, ' '))

186 }

187

188

189

190 }

191

192 score <- data.frame(observed = factor(observed, levels = c('H', 'D', 'A')),

193 win = p_win,

194 draw = p_draw,

195 loss = p_loss)

196 score

197

198 saveRDS(object = score,file = 'IndependentPoission_CL2019_MLE.rds')

199

200

201 #get scores

83

A.4. CODE FOR THE POISSON BASED MODELS

202

203 score <- readRDS('IndependentPoission_CL2019_MLE.rds')

204 score$observed_win <- ifelse(score$observed == 'H', 1 , 0)

205 score$observed_draw <- ifelse(score$observed == 'D', 1 , 0)

206 score$observed_loss <- ifelse(score$observed == 'A', 1 , 0)

207

208 score$IgnoranceScore <- apply(score[,2:7], 1, IGN)

209 score$BrierScore <-apply(score[,2:7], 1, BrierScore)

210 score$RPS <- apply(score[,2:7], 1, RPS2)

211

212 mean(score$IgnoranceScore)

213 mean(score$BrierScore)

214 mean(score$RPS)/2

215 sd(score$RPS/2)

A.4.2 Bivariate Poisson

1 ##

2 # Ranking soccer teams on current strength: MLE approach

3 # C. Ley

4 ##

5

6 # packages

7 {

8 setwd('c:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/models/R scripts/')

9 library(engsoccerdata)

10 library(tidyverse)

11 library(skellam)

12 library(caret)

13 source('BrierRpsIgnorance.R')

14 }

15

16 #Data

17 {

18 # Premier League

19 PL_data <- england

20

21

22 # Data cleaning

23

24 # filter for right dataset

25 data <- PL_data %>%

26 filter(tier == 1,

27 Season %in% 2006:2017)

28

29 data %>% group_by(Season) %>%

30 summarise(matches = length(Date),

31 team = length(levels(factor(home))))

32

84

APPENDIX A. APPENDIX

33

34 #make round parameter

35 id <- order(data$Season, data$Date)

36 data <- data[id,]

37 data$round <- rep(sort(rep(1:38,10)), max(data$Season)- min(data$Season) +1)

38 }

39

40 #functions

41 {

42 Sumation_function <- function(row, lambda_c){

43

44 lambda_i <- row[1]

45 lambda_j <- row[2]

46 gi <- row[3]

47 gj <- row[4]

48 min_goals <- row[5]

49

50 sumation <- 0

51 for (k in 0:min_goals){

52 sumation <- sumation + choose(gi,k)*choose(gj,k)*factorial(k)*((lambda_c/(

lambda_i*lambda_j))**k)

53

54 }

55 return(sumation)

56 }

57 #likelihood function

58

59 bivpoiss.mle <- function(par, data){

60

61 #parameters from data

62 teams <- sort(unique(levels(factor(data$home)),levels(factor(data$visitor))))

63 gi <- data$hgoal

64 gj <- data$vgoal

65 hteam <- as.character(data$home)

66 vteam <- as.character(data$visitor)

67

68 #restrictions

69 c <- abs(par[1])

70 h <- abs(par[2])

71 lambda_c <- abs(par[3])

72 strength <- par[4:(length(par))]

73 last_strength <- -sum(strength)

74 strength <- c(strength, last_strength)

75

76 #features for likelihood

77 ri <- strength[match(hteam, teams)]

78 rj <- strength[match(vteam, teams)]

79

80 lambda_i <- exp(c + (ri+h)-(rj))

85

A.4. CODE FOR THE POISSON BASED MODELS

81 lambda_j <- exp(c + (rj)-(ri+h))

82

83 date <- as.Date(data$Date)

84 x <- as.numeric(max(as.Date(data$Date)) - date)

85 halfperiod <- 390

86 wtime <- 0.5 ^ (x/halfperiod)

87

88

89 lambda_i_exp_gi <- apply(matrix(c(lambda_i,gi),ncol = 2), 1,function(a){return(a

[1]**a[2])})

90 rev_fact_gi <- 1/(factorial(gi))

91

92 lambda_j_exp_gj <- apply(matrix(c(lambda_j,gj),ncol = 2), 1,function(a){return(a

[1]**a[2])})

93 rev_fact_gj <- 1/(factorial(gj))

94 exp_ijc <- exp(-(lambda_i+lambda_j+lambda_c))

95

96

97 min_goals <- apply(matrix(c(gi,gj),ncol = 2), MARGIN = 1 , min)

98 sumation_matrix <- matrix(c(lambda_i, lambda_j, gi , gj, min_goals), ncol = 5)

99 sumations <- apply(sumation_matrix, MARGIN = 1, FUN = Sumation_function, lambda_

c)

100

101

102 matrix <- matrix(c(lambda_i_exp_gi,

103 rev_fact_gi,

104 lambda_j_exp_gj,

105 rev_fact_gj,

106 exp_ijc,

107 sumations),

108 ncol=6)

109

110 densities <- apply(matrix, MARGIN = 1, FUN = prod)

111

112 densities <- apply(matrix(c(densities,wtime),ncol = 2), 1,function(a){return(a

[1]**a[2])})

113

114

115 return(-sum(log(densities)))

116

117 }

118

119

120 }

121

122

123

124

125 # 2008:max(season)

86

APPENDIX A. APPENDIX

126

127 predict <- c()

128 observed <- c()

129

130 p_win <- p_draw <- p_loss <- c()

131 HAD <- c('H','D', 'A')

132

133 for (season_id in 2008:max(data$Season)){

134 # datasets

135 train_data <- data %>%

136 filter(Season %in% (season_id-2):(season_id-1))

137

138 train_data <- rbind(train_data, data %>% filter(Season == season_id,round <= 5))

139

140 print('training dataset')

141 print(train_data %>% group_by(as.character(Season)) %>% summarise(rounds = length(

levels(factor(round)))))

142

143 test <- data %>% filter(Season == season_id,round > 5)

144

145 print(test %>% group_by(Season) %>% summarise(rounds = length(levels(factor(round)

))))

146

147 # initialize prediction

148 teams <- sort(unique(c(levels(factor(train_data$home)),levels(factor(train_data$

visitor)))))

149

150 par <- c(1,1,1,rep(0,length(levels(factor(train_data$home)))-1))

151 par_optim <- optim(par = par,fn = bivpoiss.mle, data = train_data,gr = "BFGS")

152 par <- par_optim$par

153 par

154 # predict

155

156 for (i in 6:max(test$round)){

157

158 # 1. MLE based on updated train_data

159 par_optim <- optim(par = par,fn = bivpoiss.mle, data = train_data,gr = "BFGS")

160

161 # 2. Parameter extraction

162 par <- par_optim$par

163

164 c <- abs(par[1])

165 h <- abs(par[2])

166 lambda_c <- par[3]

167 strength <- par[4:(length(par))]

168 last_strength <- -sum(strength)

169 strength <- c(strength, last_strength)

170 teams <- sort(unique(c(levels(factor(train_data$home)),levels(factor(train_data$

visitor)))))

87

A.4. CODE FOR THE POISSON BASED MODELS

171

172

173 # 3. Parameters from test_data (observed)

174 t <- test %>% filter(round == i)

175 gi <- t$hgoal

176 gj <- t$vgoal

177 hteam <- as.character(t$home)

178 vteam <- as.character(t$visitor)

179

180 # 4. Features

181 ri <- strength[match(hteam, teams)]

182 rj <- strength[match(vteam, teams)]

183

184 lambda_i <- exp(c + (ri+h)-(rj))

185 lambda_j <- exp(c + (rj)-(ri+h))

186

187

188 # 5. Predict loss, draw, win

189 loss <- pskellam(q = -1,

190 lambda1 = lambda_i,

191 lambda2 = lambda_j)

192

193

194 draw <- dskellam(x = 0,

195 lambda1 = lambda_i,

196 lambda2 = lambda_j)

197

198

199 win <- 1-pskellam(q = 0,

200 lambda1 = lambda_i,

201 lambda2 = lambda_j)

202

203

204 p_win <- c(p_win, win)

205 p_draw <- c(p_draw, draw)

206 p_loss <- c(p_loss, loss)

207 # 6. Save prediction

208 observed <- c(observed, as.character(t$result))

209

210 # 7. Update train data

211 train_data <- rbind(train_data, t)

212 print(paste(season_id,i, ' '))

213 }

214

215

216

217 }

218

219 score <- data.frame(observed = factor(observed, levels = c('H', 'D', 'A')),

88

APPENDIX A. APPENDIX

220 win = p_win,

221 draw = p_draw,

222 loss = p_loss)

223 score

224

225

226 saveRDS(object = score,file = 'BivariatePoission_CL2019_MLE.rds')

227

228

229 #get scores

230

231 score <- readRDS('BivariatePoission_CL2019_MLE.rds')

232 score$observed_win <- ifelse(score$observed == 'H', 1 , 0)

233 score$observed_draw <- ifelse(score$observed == 'D', 1 , 0)

234 score$observed_loss <- ifelse(score$observed == 'A', 1 , 0)

235

236 score$IgnoranceScore <- apply(score[,2:7], 1, IGN)

237 score$BrierScore <-apply(score[,2:7], 1, BrierScore)

238 score$RPS <- apply(score[,2:7], 1, RPS2)

239

240

241 mean(score$IgnoranceScore)

242 sd(score$IgnoranceScore)

243

244 mean(score$BrierScore)

245 sd(score$BrierScore)

246

247 mean(score$RPS/2)

248 sd(score$RPS/2)

A.5 Code for the Weibull count model

A.5.1 Weibull count

1 ##

2 # A bivariate Weibull count model for forecasting association football scores

3 # G. Boshnakov

4 ##

5

6

7 # packages

8 {

9 setwd('c:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/models/R scripts/'

)

10 library(engsoccerdata)

11 library(Countr)

12 library(skellam)

89

A.5. CODE FOR THE WEIBULL COUNT MODEL

13 library(caret)

14 library(MASS)

15 library(tidyverse)

16 source('BrierRpsIgnorance.R')

17 }

18

19 # data

20 {

21 # Premier League

22 PL_data <- england

23 PL_data%>% filter(tier == 1)

24

25 data <- PL_data %>%

26 filter(tier == 1,

27 Season %in% 2006:2015)

28

29 #make round parameter

30 id <- order(data$Season, data$Date)

31 data <- data[id,]

32 data$round <- rep(sort(rep(1:38,10)), max(data$Season)- min(data$Season) +1)

33

34 }

35

36 # Frank copula function

37 {

38 Frank.copula <- function(u,v,k){

39 teller <- (exp(-k*u)-1)*(exp(-k*v)-1)

40 noemer <- (exp(-k)-1)

41 fraction <- teller/noemer

42 copula <- -1/k*log(1+fraction)

43 return(copula)

44

45 }

46 }

47

48 # Cummulative density weibull function

49 {

50 CDWeibull <- function(yi,shape, scale){

51

52 if (yi < 0) {densities <- 0}

53 else {

54 seq <- c(0, seq_len(yi))

55 densities <- dWeibullCount(seq,shape,scale)

56 return(sum(densities))

57 }

58

59 }

60 }

61

90

APPENDIX A. APPENDIX

62 # Likelihood function

63 {

64 WeibullLL <- function(par, data){

65

66 # parameters

67 teams <- sort(unique(levels(factor(data$home)),levels(factor(data$visitor))))

68 atk_teams <- par[1:length(teams)]# alpha's

69 def_teams <- par[(length(teams)+1):(2*length(teams))] # beta's

70 h <-par[(2*length(teams))+1] # home team advantage

71 k <- par[(2*length(teams))+2] # used for copula

72 Ch <- par[(2*length(teams))+3]

73 Ca <- par[(2*length(teams))+4]

74

75 #parameters from data

76 gi <- data$hgoal

77 gj <- data$vgoal

78 hteam <- as.character(data$home)

79 vteam <- as.character(data$visitor)

80

81 # restrictions ?

82

83 # derivations

84 atk_i <- atk_teams[match(hteam, teams)]

85 def_i <- def_teams[match(hteam, teams)]

86 lambda_i <- exp(atk_i+def_i+h)

87

88 atk_j <- atk_teams[match(vteam, teams)]

89 def_j <- def_teams[match(vteam, teams)]

90 lambda_j <- exp(atk_j+def_j)

91

92 # Time variety

93 epsilon <- 1/500

94 date <- as.Date(data$Date)

95 x <- as.numeric(max(as.Date(data$Date)) - date)

96 wtime <- exp(-epsilon*x)

97

98 # Weibull densities

99 MarginalDensHome <- apply(data.frame(x=gi,

100 shape=Ch,

101 scale=lambda_i),

102 MARGIN = 1,

103 FUN = function(a){return(dWeibullCount(x = a[1],shape

= a[2],scale = a[3]))})

104

105

106

107 MarginalDensAway <- apply(data.frame(x=gj,

108 shape=Ca,

109 scale=lambda_j),

91

A.5. CODE FOR THE WEIBULL COUNT MODEL

110 MARGIN = 1,

111 FUN = function(a){return(dWeibullCount(x = a[1],shape

= a[2],scale = a[3]))})

112

113 # Cumulative densities

114

115 F1 <- apply(data.frame(x=gi,

116 shape=Ch,

117 scale=lambda_i),

118 MARGIN = 1,

119 FUN = function(a){return(CDWeibull(yi = a[1],shape = a[2],scale

= a[3]))})

120

121 F2 <- apply(data.frame(x=gj,

122 shape=Ca,

123 scale=lambda_j),

124 MARGIN = 1,

125 FUN = function(a){return(CDWeibull(yi = a[1],shape = a[2],scale = a

[3]))})

126

127 Fm1 <- apply(data.frame(x=gi-1,

128 shape=Ch,

129 scale=lambda_i),

130 MARGIN = 1,

131 FUN = function(a){return(CDWeibull(yi = a[1],shape = a[2],scale =

a[3]))})

132

133 Fm2 <- apply(data.frame(x=gj-1,

134 shape=Ca,

135 scale=lambda_j),

136 MARGIN = 1,

137 FUN = function(a){return(CDWeibull(yi = a[1],shape = a[2],scale

= a[3]))})

138

139

140 L <- Frank.copula(u = F1,v = F2, k = k) - Frank.copula(u = Fm1,v = F2, k = k) -

Frank.copula(u = F1,v = Fm2, k = k) + Frank.copula(u = Fm1,v = Fm2, k = k)

141

142 # own made up

143 densities <- apply(matrix(c(L,wtime),ncol = 3), 1,prod)

144

145 return(-sum(log(densities)))

146

147 }

148

149

150 }

151

152

92

APPENDIX A. APPENDIX

153 # Algorithm

154 Prob_home <- c()

155 Prob_draw <- c()

156 Prob_away <- c()

157 observed_home <- c()

158 observed_draw <- c()

159 observed_away <- c()

160 for (season_id in 2008:2015){

161

162 # Training data

163 train_data <- data %>%

164 filter(Season %in% (season_id-2):(season_id-1))

165 train_data <- rbind(train_data, data %>% filter(Season == season_id,round <= 5))

166 print('training dataset')

167 print(train_data %>% group_by(as.character(Season)) %>% summarise(rounds = length(

levels(factor(round)))))

168

169 # Testing data

170 test <- data %>% filter(Season == season_id,round > 5)

171 print(test %>% group_by(Season) %>% summarise(rounds = length(levels(factor(round)

))))

172

173 # parameters

174 teams <- sort(unique(levels(factor(train_data$home)),levels(factor(train_data$

visitor))))

175 atk_teams <- rep(0,length(teams)) # alpha's

176 def_teams <- rep(0,length(teams)) # beta's

177 h <- 0.2948 # home team advantage

178 k <- -0.4561 # used for copula

179 Ch <- 1.050

180 Ca <- 0.9831

181

182 par <- c(atk_teams,def_teams,h,k,Ch,Ca)

183

184 par_optim <- optim(par = par,fn = WeibullLL, data = train_data,gr = "BFGS")

185

186 for (round_id in 6:(max(test$round))){

187

188 # Observation

189 obs <- test %>% filter(round == round_id)

190

191 # 1. MLE based on updated train_data

192 par_optim <- optim(par = par,fn = WeibullLL, data = train_data,gr = "BFGS")

193

194 # 2. Parameter extraction

195 par <- par_optim$par

196 teams <- sort(unique(levels(factor(train_data$home)),levels(factor(train_data$

visitor))))

197 atk_teams <- par[1:length(teams)]# alpha's

93

A.5. CODE FOR THE WEIBULL COUNT MODEL

198 def_teams <- par[(length(teams)+1):(2*length(teams))] # beta's

199 h <-par[(2*length(teams))+1] # home team advantage

200 k <- par[(2*length(teams))+2] # used for copula

201 Ch <- par[(2*length(teams))+3]

202 Ca <- par[(2*length(teams))+4]

203

204 # 3. Parameters from test_data (observed)

205 gi <- obs$hgoal

206 gj <- obs$vgoal

207 hteam <- as.character(obs$home)

208 vteam <- as.character(obs$visitor)

209

210 # 4. Features

211 atk_i <- atk_teams[match(hteam, teams)]

212 def_i <- def_teams[match(hteam, teams)]

213 lambda_i <- exp(atk_i+def_i+h)

214

215 atk_j <- atk_teams[match(vteam, teams)]

216 def_j <- def_teams[match(vteam, teams)]

217 lambda_j <- exp(atk_j+def_j)

218

219

220 # 5. Predict loss, draw, win

221

222 # prob draw

223 for (i in 1:nrow(obs)){

224 draw <- c()

225 for (goal in 0:60){

226 ProbForGoal <- dWeibullCount(x=goal,shape = Ch, scale = lambda_i[i])*

dWeibullCount(x=goal,shape = Ca, scale = lambda_j[i])

227 draw <- c(draw, ProbForGoal)

228 }

229 p_draw <- sum(draw)

230

231

232 win <- c()

233 for (goal in 0:60){

234 ProbForGoal <- dWeibullCount(x=goal,shape = Ca, scale = lambda_j[i])*(1-

CDWeibull(yi = goal, shape= Ch, scale = lambda_i[i]))

235 win <- c(win, ProbForGoal)

236 }

237 p_win <- sum(win)

238

239 loss <- c()

240 for (goal in 0:60){

241 ProbForGoal <- dWeibullCount(x=goal,shape = Ch, scale = lambda_i[i])*(1-

CDWeibull(yi = goal, shape= Ca, scale = lambda_j[i]))

242 loss <- c(loss, ProbForGoal)

243 }

94

APPENDIX A. APPENDIX

244 p_loss <- sum(loss)

245

246 if(sum(p_draw,p_win,p_loss)!=1){print('Sum probabilities is not 1')}

247

248 # 6. Save predictions

249 if (as.character(obs$result[i]) == 'H'){

250 observed_home <- c(observed_home,1)

251 observed_draw <- c(observed_draw,0)

252 observed_away <- c(observed_away,0)

253

254 }

255 else {

256 if (as.character(obs$result[i]) == 'A'){

257 observed_home <- c(observed_home,0)

258 observed_draw <- c(observed_draw,0)

259 observed_away <- c(observed_away,1)

260

261 }

262 else {

263 observed_home <- c(observed_home,0)

264 observed_draw <- c(observed_draw,1)

265 observed_away <- c(observed_away,0)

266

267 }

268 }

269

270

271 Prob_home <- c(Prob_home,p_win)

272 Prob_draw <- c(Prob_draw,p_draw)

273 Prob_away <- c(Prob_away,p_loss)

274 }

275 # 7. Update train data

276 train_data <- rbind(train_data, obs)

277 print(paste(season_id,round_id, ' '))

278 }

279 }

280

281

282 out <- data.frame(pwin = Prob_home,

283 pdraw = Prob_draw,

284 ploss = Prob_away,

285 owin = observed_home,

286 odraw = observed_draw,

287 oloss = observed_away)

288

289 all.equal(apply(out[,1:3],1,sum),rep(1,nrow(out)))

290

291 out$ignorance <- apply(out[,1:6], 1, IGN)

292 out$brierScore <-apply(out[,1:6], 1, BrierScore)

95

A.6. CODE FOR THE MACHINE LEARNING MODELS

293 out$RPS <- apply(out[,1:6], 1, RPS2)

294

295

296 mean(out$ignorance)

297 sd(out$ignorance)

298

299 mean(out$brierScore)

300 sd(out$brierScore)

301

302 mean(out$RPS/2)

303 sd(out$RPS/2)

304

305 saveRDS(object = out,file = 'BivariateWeibullCountCopula.rds')

A.6 Code for the machine learning models

A.6.1 Random forest Baboota

1 #!/usr/bin/env python

2 # coding: utf-8

3

4 # In[1]:

5

6

7 get_ipython().run_line_magic('matplotlib', 'inline')

8 import itertools

9 import numpy as np

10 import pandas as pd

11 import seaborn as sns

12 from scipy import interp

13 from pprint import pprint

14 from itertools import cycle

15 import matplotlib.pyplot as plt

16 from collections import OrderedDict

17 from sklearn.externals import joblib

18 from xgboost.sklearn import XGBClassifier

19 #from TrainTestSplit import TrainTestSplit

20 from sklearn.metrics import roc_curve, auc

21 from sklearn.metrics import confusion_matrix

22 from sklearn.model_selection import GridSearchCV

23 from sklearn.preprocessing import label_binarize

24 from sklearn.model_selection import ShuffleSplit

25 from sklearn.metrics import classification_report

26 from sklearn.multiclass import OneVsRestClassifier

27 from sklearn.model_selection import learning_curve

28 from sklearn.model_selection import cross_val_score

29 from sklearn.ensemble import RandomForestClassifier

96

APPENDIX A. APPENDIX

30 from sklearn.impute import SimpleImputer

31

32

33 np.set_printoptions(precision = 10)

34

35 # load data

36 path = "C:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/Predicting-English-

Premier-Results-master/EngineeredData.csv"

37 data = pd.read_csv(path)

38

39 data.head(5)

40

41 # Change Season

42

43 vector = []

44 for i in range(len(data['Season'])):

45 vector.append(data['Season'][i][0:4])

46 data['Season'] = vector

47

48 # Make Round Feature

49 data = data.sort_values(by=['Date'])

50

51 roundsperseason = np.repeat([i for i in range(1,39)],10)

52

53 listofdata = []

54 for season_id in sorted(set(data['Season'])):

55 test = data.copy()

56 test = test[test['Season'] == season_id]

57 test['Round'] = roundsperseason

58 listofdata.append(test)

59

60 data = pd.concat(listofdata)

61 data = data.sort_values(by=['Date'])

62

63 # Features needed

64 A = ["ATGD", "HTGD", "ACKPP", "HCKPP", "AGKPP", "HGKPP", "ASTKPP", "HSTKPP", "ASt",

"HSt", "AStWeighted", "HStWeighted", "AForm", "HForm", "AOverall", "HOverall", "

AAttack", "HAttack", "AMidfield", "HMidfield", "ADefense", "HDefense"]

65 B = ["GD", "CKPP", "GKPP", "STKPP", "Streak", "WeightedStreak", "Form", "Overall",

"Attack", "Midfield", "Defense"]

66

67 frames = []

68 for season_id in range(2008,2016):

69

70 #1. make train and test

71 train = data[(data['Season'] == str(season_id-2)) | (data['Season'] == str(

season_id-1))].copy()

72 firstrounds = data[(data['Season'] == str(season_id)) & (data['Round'] <= 5)].

copy()

97

A.6. CODE FOR THE MACHINE LEARNING MODELS

73 train = pd.concat([train,firstrounds])

74 test = data[(data['Season'] == str(season_id)) & (data['Round'] > 5)].copy()

75

76 for match_id in test.index:

77

78 #1. define match to predict

79 obs = test[test.index == match_id].copy()

80

81 #2. SPlit in x and y

82 train_x = train[A+B]

83 train_y = train['FTR']

84 test_x = obs[A+B]

85 test_y = obs['FTR']

86

87 train_x = train_x.fillna(0)

88 test_x = test_x.fillna(0)

89

90 #3. define classiffier

91 Classifier = RandomForestClassifier(bootstrap=True,

92 class_weight=None,

93 criterion='gini',

94 max_depth=None,

95 max_features='log2',

96 max_leaf_nodes=None,

97 min_impurity_split=1e-07,

98 min_samples_leaf=2,

99 min_samples_split=100,

100 min_weight_fraction_leaf=0.0,

101 n_estimators=150,

102 n_jobs=-1,

103 oob_score=True,

104 random_state=None,

105 verbose=0,

106 warm_start=False)

107

108 #4. Train and test model

109 Classifier.fit(train_x,train_y)

110

111 #5. Predict

112 YPred = Classifier.predict(test_x)

113 classLabels = ['H','A','D']

114 Yprob = Classifier.predict_proba(test_x)

115

116 #6.output

117 probs = pd.DataFrame(Yprob, columns=['p_loss','p_draw','p_win'])

118 probs['Observed'] = YPred

119 frames.append(probs)

120

121 #7. update train

98

APPENDIX A. APPENDIX

122 train = train.append(obs)

123 out = pd.concat(frames)

124 out.to_csv("C:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/RFbaboota.csv",

index=False)

A.6.2 Gradient boosting

1 #!/usr/bin/env python

2 # coding: utf-8

3

4 # In[1]:

5

6

7 get_ipython().run_line_magic('matplotlib', 'inline')

8 import itertools

9 import numpy as np

10 import pandas as pd

11 import seaborn as sns

12 from scipy import interp

13 from pprint import pprint

14 from itertools import cycle

15 import matplotlib.pyplot as plt

16 from collections import OrderedDict

17 from sklearn.externals import joblib

18 from xgboost.sklearn import XGBClassifier

19 #from TrainTestSplit import TrainTestSplit

20 from sklearn.metrics import roc_curve, auc

21 from sklearn.metrics import confusion_matrix

22 from sklearn.model_selection import GridSearchCV

23 from sklearn.preprocessing import label_binarize

24 from sklearn.model_selection import ShuffleSplit

25 from sklearn.metrics import classification_report

26 from sklearn.multiclass import OneVsRestClassifier

27 from sklearn.model_selection import learning_curve

28 from sklearn.model_selection import cross_val_score

29

30

31 np.set_printoptions(precision = 10)

32

33

34 # In[2]:

35

36

37 # load data

38 path = "C:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/Predicting-English-

Premier-Results-master/EngineeredData.csv"

39 data = pd.read_csv(path)

40

41 data.head(5)

99

A.6. CODE FOR THE MACHINE LEARNING MODELS

42

43

44 # ## Data engineering

45 #

46

47 # In[3]:

48

49

50 # Change Season

51

52 vector = []

53 for i in range(len(data['Season'])):

54 vector.append(data['Season'][i][0:4])

55 data['Season'] = vector

56

57

58 # In[4]:

59

60

61 # Make Round Feature

62 data = data.sort_values(by=['Date'])

63

64 roundsperseason = np.repeat([i for i in range(1,39)],10)

65

66 listofdata = []

67 for season_id in sorted(set(data['Season'])):

68 test = data.copy()

69 test = test[test['Season'] == season_id]

70 test['Round'] = roundsperseason

71 listofdata.append(test)

72

73 data = pd.concat(listofdata)

74 data = data.sort_values(by=['Date'])

75

76

77 # In[5]:

78

79

80 # Features needed

81 A = ["ATGD", "HTGD", "ACKPP", "HCKPP", "AGKPP", "HGKPP", "ASTKPP", "HSTKPP", "ASt",

"HSt", "AStWeighted", "HStWeighted", "AForm", "HForm", "AOverall", "HOverall", "

AAttack", "HAttack", "AMidfield", "HMidfield", "ADefense", "HDefense"]

82 B = ["GD", "CKPP", "GKPP", "STKPP", "Streak", "WeightedStreak", "Form", "Overall",

"Attack", "Midfield", "Defense"]

83

84

85 # In[7]:

86

87

100

APPENDIX A. APPENDIX

88 season_id = 2008

89

90 #1. make train and test

91 train = data[(data['Season'] == str(season_id-2)) | (data['Season'] == str(season_id

-1))].copy()

92 firstrounds = data[(data['Season'] == str(season_id)) & (data['Round'] <= 5)].copy()

93 train = pd.concat([train,firstrounds])

94 test = data[(data['Season'] == str(season_id)) & (data['Round'] > 5)].copy()

95

96

97 # In[11]:

98

99

100 test

101

102

103 # In[10]:

104

105

106 test['Round']

107

108

109 # In[20]:

110

111

112 frames = []

113 rounds = []

114 seasons = []

115

116 for season_id in range(2008,2016):

117

118 #1. make train and test

119 train = data[(data['Season'] == str(season_id-2)) | (data['Season'] == str(

season_id-1))].copy()

120 firstrounds = data[(data['Season'] == str(season_id)) & (data['Round'] <= 5)].

copy()

121 train = pd.concat([train,firstrounds])

122 test = data[(data['Season'] == str(season_id)) & (data['Round'] > 5)].copy()

123

124 #train = train[['FTR']+B].dropna(axis=0)

125 #test = test[['FTR']+B].dropna(axis=0)

126

127 for match_id in test.index:

128

129 #1. define match to predict

130 obs = test[test.index == match_id].copy()

131 rounds.append(int(obs['Round']))

132 seasons.append(int(obs['Season']))

133

101

A.6. CODE FOR THE MACHINE LEARNING MODELS

134

135 #2. SPlit in x and y

136 train_x = train[B]

137 train_y = train['FTR']

138 test_x = obs[B]

139 test_y = obs['FTR']

140

141

142 #3. define classiffier

143 Classifier = XGBClassifier(base_score=0.5,

144 booster='gbtree',

145 colsample_bylevel=1,

146 colsample_bytree=1,

147 gamma=0.2,

148 learning_rate=0.05,

149 max_delta_step=0,

150 max_depth=3,

151 min_child_weight=1,

152 n_estimators=100,

153 n_jobs=-1,

154 nthread=None,

155 objective='multi:softprob',

156 random_state=0,

157 reg_alpha=0,

158 reg_lambda=0.6,

159 scale_pos_weight=1,

160 seed=None,

161 silent=True,

162 subsample=1)

163

164 #4. Train and test model

165 Classifier.fit(train_x,train_y)

166

167 #5. Predict

168 YPred = Classifier.predict(test_x)

169 classLabels = ['H','A','D']

170 Yprob = Classifier.predict_proba(test_x)

171

172 #6.output

173 probs = pd.DataFrame(Yprob, columns=['p_loss','p_draw','p_win'])

174 probs['Observed'] = YPred

175 frames.append(probs)

176

177 #7. update train

178 train = train.append(obs)

179 out = pd.concat(frames)

180 out.to_csv("C:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/Xgboost_dropna.

csv",index=False)

181

102

APPENDIX A. APPENDIX

182

183 # In[22]:

184

185

186 out['season'] = seasons

187 out['round'] = rounds

188

189 out.to_csv("C:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/

Xgboostevolution.csv",index=False)

190

191

192 # In[40]:

193

194

195 importances = Classifier.feature_importances_

196 indices = np.argsort(importances)[::-1]

197 names = [B[i] for i in indices]

198

199 # Create plot

200 plt.figure()

201

202 # Create plot title

203 plt.title("Feature Importance")

204

205 # Add bars

206 plt.barh(range(train_x.shape[1]), importances[indices])

207

208 # Add feature names as x-axis labels

209 plt.yticks(range(train_x.shape[1]), names)

210

211 # Show plot

212 plt.show()

213

214

215 # In[44]:

216

217

218 names

219

220

221 # In[43]:

222

223

224 pd.DataFrame(zip(names,importances), columns=['feature','importance']).to_csv("C:/

Users/Thiebe/Documents/academie jaar 2019-2020/thesis/Xgboostfeatureimportance.

csv",index=False)

103

A.7. CODE FOR THE HYBRID MODELS

A.7 Code for the hybrid models

A.7.1 Random forest Groll

1 # hybrid random forest data

2

3 # packages

4 {

5 setwd('c:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/models/R scripts/'

)

6 library(engsoccerdata)

7 library(tidyverse)

8 library(mlr)

9 library(skellam)

10 library(Hmisc)

11 library(party)

12 source('BrierRpsIgnorance.R')

13

14 substrRight <- function(x, n){

15 substr(x, nchar(x)-n+1, nchar(x))

16 }

17 }

18

19 # Data

20 {

21 # basic data (outcomes)

22 {

23 # Premier League

24 PL_data <- england

25

26 data <- PL_data %>%

27 filter(tier == 1,

28 Season %in% 2006:2015)

29

30 #make round parameter

31 id <- order(data$Season, data$Date)

32 data <- data[id,]

33 data$round <- rep(sort(rep(1:38,10)), max(data$Season)- min(data$Season) +1)

34

35 # data

36 data$Date <- as.Date(data$Date)

37 data$key <- paste0(data$Date,substr(as.character(data$home),1,1),substr(as.

character(data$visitor),1,1),data$hgoal,data$vgoal)

38 droplevels(data$home)

39 droplevels(data$visitor)

40 }

41

42 # elo

104

APPENDIX A. APPENDIX

43 {

44 elo_data <- readRDS('elo_data.rds')

45 elo_data$Date <- as.Date(elo_data$Date)

46 elo_data$Season <- NULL

47 merged <- merge(data, elo_data,by = c('Date','home','visitor'))

48

49 }

50

51

52 # age check why this doesnt work!

53 {

54 agedata <- read.csv('c:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/

models/EPL_player_age_data.csv')

55 agedata$dob <- as.Date(agedata$dob, format = '%d/%m/%Y')

56 agedata$startseason <- as.Date(agedata$startseason)

57 agedata$age <- agedata$startseason - agedata$dob

58 agedata$age <- as.numeric(agedata$age)/365.25

59 agedata$season <- as.numeric(agedata$season)

60 agedata <- agedata %>% group_by(season,club) %>% summarise(mean_age = mean(age))

61 agedata$club <- str_remove(agedata$club,' FC')

62 agedata$club <- str_remove(agedata$club,' AFC')

63 colnames(agedata) <- c('Season','home', 'homeage')

64 merged <- merge(merged,agedata,by = c('Season','home'))

65 merged$homeage <- with(merged, impute(homeage, mean))

66 colnames(agedata) <- c('Season','visitor', 'awayage')

67 merged <- merge(merged,agedata,by = c('Season','visitor'))

68 merged$awayage <- with(merged, impute(awayage, mean))

69

70

71 }

72

73 # fifa

74 {

75 fifa <- read.csv("C:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/

Predicting-English-Premier-Results-master/EngineeredData.csv")

76 fifa <- fifa[,c('Date','HomeTeam','AwayTeam',

77 'HAttack','HDefense','HMidfield','HOverall' ,

78 'AAttack','ADefense','AMidfield','AOverall')]

79 #fifa$Season <- substr(fifa$Season,start = 6,stop = 9)

80 colnames(fifa)<- c('Date','home','visitor',

81 'HAttack','HDefense','HMidfield','HOverall' ,

82 'AAttack','ADefense','AMidfield','AOverall')

83

84

85 fifa$home <- str_remove(fifa$home,' FC')

86 fifa$home <- str_remove(fifa$home,' AFC')

87 fifa$home[fifa$home == 'Spurs'] <- 'Tottenham Hotspur'

88

89 fifa$visitor <- str_remove(fifa$visitor,' FC')

105

A.7. CODE FOR THE HYBRID MODELS

90 fifa$visitor <- str_remove(fifa$visitor,' AFC')

91 fifa$visitor[fifa$visitor== 'Spurs'] <- 'Tottenham Hotspur'

92

93

94 merged$k <- paste0(merged$Date,

95 substr(str_remove(merged$home,'AFC '),1,1),

96 substr(str_remove(merged$visitor,'AFC '),1,1))

97

98 fifa$k <- paste0(fifa$Date,

99 substr(str_remove(fifa$home,'AFC '),1,1),

100 substr(str_remove(fifa$visitor,'AFC '),1,1))

101

102 fifa$Date <- fifa$home <- fifa$visitor <- NULL

103

104

105 merged <- merge(merged,fifa,by=c('k'))

106

107 #paste0(merged$Date,merged$home,merged$visitor)[! merged$k %in% fifa$k]

108 merged$k<- NULL

109

110 }

111

112

113 # oddset

114 {

115 Oddset <- readRDS('Oddset.rds')

116 Oddset$home <- Oddset$visitor <- Oddset$Date <- NULL

117 merged <- merge(merged, Oddset,by = c('key'))

118 merged$key <- NULL

119

120 }

121

122

123

124

125

126 # final Data set

127 {

128 data <- data.frame(result = merged$result,

129 hgoal = merged$hgoal,

130 vgoal = merged$vgoal,

131 elo = merged$elo_home-merged$elo_away,

132 age = merged$homeage - merged$awayage,

133 betHome = merged$B365H,

134 betDraw = merged$B365D,

135 betAway = merged$B365A,

136 round = merged$round,

137 Season = merged$Season,

138 FifaAttack = merged$HAttack - merged$AAttack,

106

APPENDIX A. APPENDIX

139 FifaMidfield = merged$HMidfield - merged$AMidfield,

140 FifaDefense = merged$HDefense - merged$ADefense,

141 FifaOVerall = merged$HOverall - merged$AOverall,

142 date = as.Date(merged$Date)

143)

144 print(data %>% group_by(as.character(Season)) %>% summarise(rounds = length(

round)))

145

146 id <- order(data$date)

147 data <- data[id,]

148 }

149 }

150

151 #Algorithm

152 Prob_home <- c()

153 Prob_draw <- c()

154 Prob_away <- c()

155 observed_home <- c()

156 observed_draw <- c()

157 observed_away <- c()

158 for (season_id in 2008:2015){

159

160 # Training data

161 {

162 train_data <- data %>%

163 filter(Season %in% (season_id-2):(season_id-1))

164 train_data <- rbind(train_data, data %>% filter(Season == season_id,round <= 5)

)

165 print('training dataset')

166 print(train_data %>% group_by(as.character(Season)) %>% summarise(rounds =

length(levels(factor(round)))))

167 }

168

169 # Testing data

170 {

171 test <- data %>% filter(Season == season_id,round > 5)

172 print(test %>% group_by(Season) %>% summarise(rounds = length(levels(factor(

round)))))

173 }

174

175 # Hyperparameters

176 {

177 B <- 5000

178

179

180

181 }

182

183

107

A.7. CODE FOR THE HYBRID MODELS

184 for (round_id in 6:(max(test$round))){

185

186

187 print(paste(season_id,' ',round_id))

188

189

190 # Observation

191 obs <- test %>% filter(round == round_id)

192 train_data$age <- as.numeric(train_data$age)

193 obs$age <- as.numeric(obs$age)

194

195 # 1. Train Random Forest

196

197 cf <- cforest(formula = hgoal + vgoal ~ elo + age +betHome + betDraw + betAway

+FifaAttack + FifaMidfield + FifaDefense + FifaOVerall,

198 data = train_data,

199 controls = cforest_control(ntree = B))

200

201 # 3. Predict goal difference test

202 observed_goals <- obs[,c('hgoal','vgoal')]

203 colnames(observed_goals) <- c('hgoal_observed','vgoal_observed')

204 predicted_goals <- predict(cf, newdata = obs, type = "response")

205 predicted_goals <- matrix(unlist(predicted_goals),ncol = 2,byrow = TRUE)

206 colnames(predicted_goals) <- c('hgoal_predicted','vgoal_predicted')

207 cbind(observed_goals,predicted_goals)

208

209

210 # 4. Predict win draww loss with skellam

211 p_loss <- pskellam(q = -1,

212 lambda1 = predicted_goals[,1],

213 lambda2 = predicted_goals[,2])

214

215

216 p_draw <- dskellam(x = 0,

217 lambda1 = predicted_goals[,1],

218 lambda2 = predicted_goals[,2])

219

220

221 p_win <- 1-pskellam(q = 0,

222 lambda1 = predicted_goals[,1],

223 lambda2 = predicted_goals[,2])

224

225

226 Prob_home <- c(Prob_home,p_win)

227 Prob_draw <- c(Prob_draw,p_draw)

228 Prob_away <- c(Prob_away,p_loss)

229

230 for (i in 1:nrow(obs)){

231 if (as.character(obs$result[i]) == 'H'){

108

APPENDIX A. APPENDIX

232 observed_home <- c(observed_home,1)

233 observed_draw <- c(observed_draw,0)

234 observed_away <- c(observed_away,0)

235

236 }

237 else {

238 if (as.character(obs$result[i]) == 'A'){

239 observed_home <- c(observed_home,0)

240 observed_draw <- c(observed_draw,0)

241 observed_away <- c(observed_away,1)

242

243 }

244 else {

245 observed_home <- c(observed_home,0)

246 observed_draw <- c(observed_draw,1)

247 observed_away <- c(observed_away,0)

248

249 }

250 }

251 }

252

253 # 7. Update train data

254 train_data <- rbind(train_data, obs)

255 }

256

257

258 }

259

260 out <- data.frame(pwin = Prob_home,

261 pdraw = Prob_draw,

262 ploss = Prob_away,

263 owin = observed_home,

264 odraw = observed_draw,

265 oloss = observed_away)

266

267 all.equal(apply(out[,1:3],1,sum),rep(1,nrow(out)))

268

269 out$ignorance <- apply(out[,1:6], 1, IGN)

270 out$brierScore <-apply(out[,1:6], 1, BrierScore)

271 out$RPS <- apply(out[,1:6], 1, RPS2)

272

273

274 mean(out$ignorance)

275 sd(out$ignorance)

276

277 mean(out$brierScore)

278 sd(out$brierScore)

279

280 mean(out$RPS/2)

109

A.7. CODE FOR THE HYBRID MODELS

281 sd(out$RPS/2)

282

283 saveRDS(object = out,file = 'RFgroll.rds')

A.7.2 Hybrid random forest

1 # hybrid random forest data

2

3 # packages

4 {

5 setwd('c:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/models/R scripts/'

)

6 library(engsoccerdata)

7 library(tidyverse)

8 library(mlr)

9 library(skellam)

10 library(Hmisc)

11 library(party)

12 source('BrierRpsIgnorance.R')

13

14 substrRight <- function(x, n){

15 substr(x, nchar(x)-n+1, nchar(x))

16 }

17 }

18

19 # Data

20 {

21 # basic data (outcomes)

22 {

23 # Premier League

24 PL_data <- england

25

26 data <- PL_data %>%

27 filter(tier == 1,

28 Season %in% 2006:2015)

29

30 #make round parameter

31 id <- order(data$Season, data$Date)

32 data <- data[id,]

33 data$round <- rep(sort(rep(1:38,10)), max(data$Season)- min(data$Season) +1)

34

35 # data

36 data$Date <- as.Date(data$Date)

37 data$key <- paste0(data$Date,substr(as.character(data$home),1,1),substr(as.

character(data$visitor),1,1),data$hgoal,data$vgoal)

38 droplevels(data$home)

39 droplevels(data$visitor)

40 }

41

110

APPENDIX A. APPENDIX

42 # elo

43 {

44 elo_data <- readRDS('elo_data.rds')

45 elo_data$Date <- as.Date(elo_data$Date)

46 elo_data$Season <- NULL

47 merged <- merge(data, elo_data,by = c('Date','home','visitor'))

48

49 }

50

51 # abilities

52 {

53 ability_data <- readRDS('ability_data_final.rds')

54 colnames(ability_data) <-c("Date","Season","home","visitor", "ability_home", "

ability_away")

55 ability_data$Date <- as.Date(ability_data$Date)

56 ability_data$Season<- NULL

57 merged <- merge(merged, ability_data,by = c('Date','home','visitor'))

58

59 }

60

61 # age check why this doesnt work!

62 {

63 agedata <- read.csv('c:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/

models/EPL_player_age_data.csv')

64 agedata$dob <- as.Date(agedata$dob, format = '%d/%m/%Y')

65 agedata$startseason <- as.Date(agedata$startseason)

66 agedata$age <- agedata$startseason - agedata$dob

67 agedata$age <- as.numeric(agedata$age)/365.25

68 agedata$season <- as.numeric(agedata$season)

69 agedata <- agedata %>% group_by(season,club) %>% summarise(mean_age = mean(age))

70 agedata$club <- str_remove(agedata$club,' FC')

71 agedata$club <- str_remove(agedata$club,' AFC')

72 colnames(agedata) <- c('Season','home', 'homeage')

73 merged <- merge(merged,agedata,by = c('Season','home'))

74 merged$homeage <- with(merged, impute(homeage, mean))

75 colnames(agedata) <- c('Season','visitor', 'awayage')

76 merged <- merge(merged,agedata,by = c('Season','visitor'))

77 merged$awayage <- with(merged, impute(awayage, mean))

78

79

80 }

81

82 # fifa

83 {

84 fifa <- read.csv("C:/Users/Thiebe/Documents/academie jaar 2019-2020/thesis/

Predicting-English-Premier-Results-master/EngineeredData.csv")

85 fifa <- fifa[,c('Date','HomeTeam','AwayTeam',

86 'HAttack','HDefense','HMidfield','HOverall' ,

87 'AAttack','ADefense','AMidfield','AOverall')]

111

A.7. CODE FOR THE HYBRID MODELS

88 #fifa$Season <- substr(fifa$Season,start = 6,stop = 9)

89 colnames(fifa)<- c('Date','home','visitor',

90 'HAttack','HDefense','HMidfield','HOverall' ,

91 'AAttack','ADefense','AMidfield','AOverall')

92

93

94 fifa$home <- str_remove(fifa$home,' FC')

95 fifa$home <- str_remove(fifa$home,' AFC')

96 fifa$home[fifa$home == 'Spurs'] <- 'Tottenham Hotspur'

97

98 fifa$visitor <- str_remove(fifa$visitor,' FC')

99 fifa$visitor <- str_remove(fifa$visitor,' AFC')

100 fifa$visitor[fifa$visitor== 'Spurs'] <- 'Tottenham Hotspur'

101

102

103 merged$k <- paste0(merged$Date,

104 substr(str_remove(merged$home,'AFC '),1,1),

105 substr(str_remove(merged$visitor,'AFC '),1,1))

106

107 fifa$k <- paste0(fifa$Date,

108 substr(str_remove(fifa$home,'AFC '),1,1),

109 substr(str_remove(fifa$visitor,'AFC '),1,1))

110

111 fifa$Date <- fifa$home <- fifa$visitor <- NULL

112

113

114 merged <- merge(merged,fifa,by=c('k'))

115

116 #paste0(merged$Date,merged$home,merged$visitor)[! merged$k %in% fifa$k]

117 merged$k<- NULL

118

119 }

120

121

122 # oddset

123 {

124 Oddset <- readRDS('Oddset.rds')

125 Oddset$home <- Oddset$visitor <- Oddset$Date <- NULL

126 merged <- merge(merged, Oddset,by = c('key'))

127 merged$key <- NULL

128

129 }

130

131

132

133

134

135 # final Data set

136 {

112

APPENDIX A. APPENDIX

137 data <- data.frame(result = merged$result,

138 hgoal = merged$hgoal,

139 vgoal = merged$vgoal,

140 elo = merged$elo_home-merged$elo_away,

141 ability = merged$ability_home-merged$ability_away,

142 age = merged$homeage - merged$awayage,

143 betHome = merged$B365H,

144 betDraw = merged$B365D,

145 betAway = merged$B365A,

146 round = merged$round,

147 Season = merged$Season,

148 FifaAttack = merged$HAttack - merged$AAttack,

149 FifaMidfield = merged$HMidfield - merged$AMidfield,

150 FifaDefense = merged$HDefense - merged$ADefense,

151 FifaOVerall = merged$HOverall - merged$AOverall,

152 date = as.Date(merged$Date)

153)

154 print(data %>% group_by(as.character(Season)) %>% summarise(rounds = length(

round)))

155

156 id <- order(data$date)

157 data <- data[id,]

158 }

159 }

160

161 #Algorithm

162 Prob_home <- c()

163 Prob_draw <- c()

164 Prob_away <- c()

165 observed_home <- c()

166 observed_draw <- c()

167 observed_away <- c()

168 for (season_id in 2008:2015){

169

170 # Training data

171 {

172 train_data <- data %>%

173 filter(Season %in% (season_id-2):(season_id-1))

174 train_data <- rbind(train_data, data %>% filter(Season == season_id,round <= 5)

)

175 print('training dataset')

176 print(train_data %>% group_by(as.character(Season)) %>% summarise(rounds =

length(levels(factor(round)))))

177 }

178

179 # Testing data

180 {

181 test <- data %>% filter(Season == season_id,round > 5)

113

A.7. CODE FOR THE HYBRID MODELS

182 print(test %>% group_by(Season) %>% summarise(rounds = length(levels(factor(

round)))))

183 }

184

185 # Hyperparameters

186 {

187 B <- 5000

188

189

190

191 }

192

193

194 for (round_id in 6:(max(test$round))){

195

196

197 print(paste(season_id,' ',round_id))

198

199

200 # Observation

201 obs <- test %>% filter(round == round_id)

202 train_data$age <- as.numeric(train_data$age)

203 obs$age <- as.numeric(obs$age)

204

205 # 1. Train Random Forest

206

207 cf <- cforest(formula = hgoal + vgoal ~ elo + ability + age +betHome + betDraw

+ betAway +FifaAttack + FifaMidfield + FifaDefense + FifaOVerall,

208 data = train_data,

209 controls = cforest_control(ntree = B))

210

211 # 3. Predict goal difference test

212 observed_goals <- obs[,c('hgoal','vgoal')]

213 colnames(observed_goals) <- c('hgoal_observed','vgoal_observed')

214 predicted_goals <- predict(cf, newdata = obs, type = "response")

215 predicted_goals <- matrix(unlist(predicted_goals),ncol = 2,byrow = TRUE)

216 colnames(predicted_goals) <- c('hgoal_predicted','vgoal_predicted')

217 cbind(observed_goals,predicted_goals)

218

219

220 # 4. Predict win draww loss with skellam

221 p_loss <- pskellam(q = -1,

222 lambda1 = predicted_goals[,1],

223 lambda2 = predicted_goals[,2])

224

225

226 p_draw <- dskellam(x = 0,

227 lambda1 = predicted_goals[,1],

228 lambda2 = predicted_goals[,2])

114

APPENDIX A. APPENDIX

229

230

231 p_win <- 1-pskellam(q = 0,

232 lambda1 = predicted_goals[,1],

233 lambda2 = predicted_goals[,2])

234

235

236 Prob_home <- c(Prob_home,p_win)

237 Prob_draw <- c(Prob_draw,p_draw)

238 Prob_away <- c(Prob_away,p_loss)

239

240 for (i in 1:nrow(obs)){

241 if (as.character(obs$result[i]) == 'H'){

242 observed_home <- c(observed_home,1)

243 observed_draw <- c(observed_draw,0)

244 observed_away <- c(observed_away,0)

245

246 }

247 else {

248 if (as.character(obs$result[i]) == 'A'){

249 observed_home <- c(observed_home,0)

250 observed_draw <- c(observed_draw,0)

251 observed_away <- c(observed_away,1)

252

253 }

254 else {

255 observed_home <- c(observed_home,0)

256 observed_draw <- c(observed_draw,1)

257 observed_away <- c(observed_away,0)

258

259 }

260 }

261 }

262

263 # 7. Update train data

264 train_data <- rbind(train_data, obs)

265 }

266

267

268 }

269

270 out <- data.frame(pwin = Prob_home,

271 pdraw = Prob_draw,

272 ploss = Prob_away,

273 owin = observed_home,

274 odraw = observed_draw,

275 oloss = observed_away)

276

277 all.equal(apply(out[,1:3],1,sum),rep(1,nrow(out)))

115

A.7. CODE FOR THE HYBRID MODELS

278

279 out$ignorance <- apply(out[,1:6], 1, IGN)

280 out$brierScore <-apply(out[,1:6], 1, BrierScore)

281 out$RPS <- apply(out[,1:6], 1, RPS2)

282

283

284 mean(out$ignorance)

285 sd(out$ignorance)

286

287 mean(out$brierScore)

288 sd(out$brierScore)

289

290 mean(out$RPS/2)

291 sd(out$RPS/2)

292

293 saveRDS(object = out,file = 'hybridRF.rds')

116

